
Numerical Methods II, Courant Institute, Spring 2020

http://www.math.nyu.edu/faculty/goodman/teaching/HonorsAlgebraII2020/NumericalMethodsII2020.html

Always check the classes message board before doing any work on the assignment.

Assignment 3, due April 14

Corrections: [none yet]

1. (Normal matrices) In case you forgot, a complex matrix H is hermitian if
it is equal to its complex conjugate. In terms of entries, this is

Hjk = Hkj .

More reminders: the eigenvalues of a hermitian matrix are real. A hermi-
tian matrix has orthogonal eigenvectors that may be made orthonormal
by normalizing. Let A be any d× d real matrix and let

H =
1

2

(
A+At

)
, S =

1

2

(
A−At

)
.

The matrix A is normal if it commutes with its transpose: AAt = AtA.

(a) H is the symmetric (hermitian) part and S is the skew symmetric
part of A. Show that H is symmetric, S is skew symmetric, and iS is
hermitian. [The i in the last formula is the reason for talking about
complex hermitian rather than just real symmetric matrices.]

(b) Show that A is normal if and only if H and S commute.

(c) Suppose that H and KS are hermitian, and Hu = λu with u 6= 0.
Show that if H and K commute then u is also an eigenvector of K.

(d) Assume that the eigenvalues of H are distinct. Show that A is diag-
onalizable and that the right eigenvector matrix R may be taken to
be unitary.

(e) The spectral radius of A is

ρ = max |λ| .

[The spectrum of a matrix is the set of eigenvalues. These are points
in the complex plane. ρ is the radius of the smallest disk centered at
the origin that contains the spectrum.] Show that if A is a normal
matrix, then

‖An‖2 = ρn .

The matrix norm on the left is the 2−norm, which is defined by

‖A‖22 = max
x 6=0

(Ax)t(Ax)

xtx
.

In terms of singular values, ‖A‖2 = σmax. Conclusion: Eigenvalue
analysis correctly predicts stability and growth rates, even for large
matrices, for normal matrices.
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2. Let A be a d×d matrix with λ on the diagonal and 1 on the super diagonal,
and zeros elsewhere. This is a d×d Jordan block with eigenvalue λ. Write
this matrix as A = λI + J , where J . The point of this problem is to show
that the entries of An are much larger than λn. Let m(n) be the largest

element in An, that is: m(n) = maxj,k

∣∣∣(An)jk

∣∣∣. It is possible that |λ|n < 1

and yet m(n) → ∞ exponentially. We will find an approximate (“very
approximate”, which means not very approximate) formula for m(n) that
shows this. The tool is a simple form Stirling’s approximation

m! ≈ mme−m .

Here is a sequence of steps/hints toward a solution:

• Figure out Jm and (λI)kJn−k, assuming that n < d.

• Show that the binomial expansion

(λI + J)
n

=
∑
k

(
n

k

)
λkJn−k

• Show that the binomial expansion gives an explicit formula for ele-
ment of An.

• To find the largest element in An, maximize
(
n
k

)
λk. You can do this

(approximately) by writing a formula for
(

n
k+1

)
in terms of

(
n
k

)
and

using that to find k that satisfies(
n

k + 1

)
λk+1 =

(
n

k

)
|λ|k .

This is like calculus I, where you find a maximum by finding where
the function is neither increasing nor decreasing. The k you get is
probably not an integer, which you can worry about later.

• Use Stirling’s approximation to get an approximate formula for
(
n
k

)
|λ|k.

It should involve
(
n
k

)k
and

(
n

n−k

)n−k
.

• Insert your optimal k and simplify. The approximation k ≈ k + 1
should apply if k is large). The optimal k gives n − k in terms of λ
and k, which simplifies the expression.

• For fixed λ and large n (mathematicians say n → ∞) with n < d
(that means large d too), the whole thing simplifies to something
involving |λ|+ 1 instead of |λ|.

3. A matrix is highly non-normal (unfortunate but unavoidable terminology)
if ‖An‖ � ρn. Exercise 2 explored a special family of matrices that
can be highly non-normal. These matrices are easy to analyze, but it
might seem that the high non-normality is because of the Jordan structure.
Use Python to explore matrices like in exercise 2, but with a on the sub

2



diagonal. Take 0 < λ < 1 and a not large. Calculate ρ (let Python
calculate ρ), and ‖An‖ (whatever matrix norm you like). Demonstrate,
computationally, that these matrices can have distinct eigenvalues and
still be highly non-normal. Warning: Python will be unable to calculate
the eigenvalues of A accurately unless d is rather small.

4. Find a second order accurate 3 point upwind method for the scalar linear
advection equation ∂tu+ s∂su = 0. The scheme has the form

uj,n+1 = auj−2,n + buj−1,n + cuj,n .

Assume the usual: uj,n is the approximation for u(xj , tn) with xj = j∆x
and tn = n∆t. Assume s > 0 and λ = s∆t

∆x is fixed as ∆x → 0. There
are several ways to do this. One is to do quadratic interpolation in space
at time tn to get to the characteristic point xj − s∆t. Another way is to
do calculations like the Lax Wendroff calculations. Calculate the stability
limit. What is the largest λ for which the scheme is linearly stable by von
Neumann analysis?

5. The shallow water equations for two dimensional waves in three dimen-
sional shallow water involve variables h(x, y, t) (the height of the water
surface over the bottom), vx(x, y, t) (the mean x velocity, depth averaged),
and vy(x, y, t) (the y velocity, depth averaged). Depth averaged means the
average of the three dimensional velocity V over the “water column”:

vx(x, y, t) =
1

depth

∫ z=h(x,y,t)

z=bottom

Vx(x, y, z, t) dz .

The water is “shallow” when the x, y wavelength is large compared to the
depth. The more “shallow” the water, the more accurate the equations.
Tsunamis in the deep ocean are an example. The wavelength is several
tens of kilometers and the depth is a few kilometers. The equations given
below assume that the fluid density is ρ = 1, which is nearly true for sea
water in CGS units. g is the gravitational acceleration constant, which is
about 9.8 m/sec2.

∂th+ ∂x (hvx) + ∂y (hvy) = 0

∂t (hvx) + ∂x

(
hv2

x +
1

2
gh2

)
+ ∂y (hvxvy) = 0

∂t (hvy) + ∂x (hvxvy) + ∂y

(
hv2

y +
1

2
gh2

)
= 0

The primitive variables are the depth and velocity: h, vx, and vy. The
conserved variables are depth (mass, because water is not compressed in
this approximation) and momentum variables mx = hvx and my = hvy.
These equations resemble the simple compressible gas equations given in
class, but with “pressure” given by 1

2h
2, and h taking the place of density.
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The h ∼ density is supported by the idea that the amount of water above
a two dimensional region of ocean, A, is (with unit density, as before)∫

A

h(x, y, t) dxdy .

In conserved variables, the equations are

∂th+ ∂x (mx) + ∂y (my) = 0

∂tmx + ∂x

(
h−1m2

x +
1

2
gh2

)
+ ∂y

(
h−1mxmy

)
= 0

∂tmy + ∂x
(
h−1mxmy

)
+ ∂y

(
h−1m2

y +
1

2
gh2

)
= 0

Bathymetry refers to measurements of the depth of the ocean. The equa-
tions above are for ocean with a flat bottom, “constant bathymetry”.
Suppose b(x, y) is the height of the bottom (probably negative, measured
from where the surface would be if the water were flat. The “variable
depth” shallow water equations, in conserved variables, are

∂th+ ∂x (mx) + ∂y (my) = 0

∂tmx + ∂x

(
h−1m2

x +
1

2
gh2

)
+ ∂y

(
h−1mxmy

)
= gh∂xb

∂tmy + ∂x
(
h−1mxmy

)
+ ∂y

(
h−1m2

y +
1

2
gh2

)
= gh∂yb .

The variable h(x, y, t) still represents the height (depth) of the water above
the bottom. This means that the water surface is flat if b(x, y)+h(x, y, t) =
const. You can check that flat water with no movement is a solution; if
h+ b = const and vx = vy = 0 then all three equations are satisfied.

(a) Find the linearized equations assuming flat bathymetry and base con-
stant solution h = h0, vx = vy = 0. Write them as a first order
system with 3 × 3 matrices Ax and Ay. Show that the linearized
equations have plane wave solutions that propagate in any direction
at a wave speed s0 =

√
gh0. Do this by finding the eigenvalues and

eigenvectors of the matrix Aω = ωxAx +ωyAy. Show that, from this
analysis, the water moves in the same direction the wave is moving.

(b) Write a code to solve the linearized shallow water equations, as-
suming h0 = 3 km. Warning: g changes when you express length
in kilometers. Apply periodic boundary conditions in space with
h(x + Lx, y, t) = h(x, y + Ly, t) (and for the other variables). Use
grid points xj = j∆x, and yk = k∆x (same spacing in x and y).
Choose ∆t = λs0∆x. Compute the space derivatives by second or-
der or fourth order centered differences to get a semi-discrete scheme,
then evolve in time using the four stage fourth order Runge Kutta
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method. Verify the code by computing plane waves in various di-
rections (not just x or y or 45 degrees). Take an initial disturbance

to be mode in direction ω with a Gaussian e−u
2/2l2 profile with a

length l = 30 km and compute the propagation for a time that lets
the waves move a distance of 3l = 90 km. Do a convergence study
to see that the scheme is second order accurate with second order
space derivatives and fourth order with fourth order derivatives in
space. Show that the scheme is stable for λ < 2

√
2 and unstable for

λ > 2
√

2.

(c) Take bathymetry to represent an undersea island

b(x, y) =
1

2
h0e
−r2/2l2 , r2 = (x− x0)2 + y2 .

Start with an initial plane wave moving in the +x direction starting
near x = 0 and choose x0 = 4l. Make a movie of the solution,. For
example, each frame can be a contour plot of h(·, ·, t). Choose Lx

and Ly large enough to see the scattered wave well.

6. Write a code to apply the first order upwind scheme and the Lax Wendroff
scheme to the scalar linear advection problem. Compute the modified
equation for each scheme and show that the modified equation correctly
predicts the qualitative behavior of the solution with piecewise constant
initial data. You can solve the modified equation by a finite difference
equation or using Fourier analysis.
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