
Numerical Methods II, Courant Institute, Spring 2020

http://www.math.nyu.edu/faculty/goodman/teaching/HonorsAlgebraII2020/NumericalMethodsII2020.html

Always check the classes message board before doing any work on the assignment.

Assignment 1, due February 24

Corrections: [none yet]

1. A representation

A =
∑

Ak

is efficient if the sum converges rapidly. A sum converges geometrically
(also called exponentially) if there is a C and ρ < 1 so that

|Ak| ≤ Cρ|n| . (1) tec

This inequality says (sort of) that term Ak+1 is smaller than term Ak
by a factor of ρ. If the An go to zero geometrically (

tec
1), then the partial

sums converge to the full sum geometrically. Specifically, show that the
inequality (

tec
1) implies that there is another constant C ′ so that (with the

same ρ) ∣∣∣∣∣∣
∑

Ak −
∑
|k|≤n

Ak

∣∣∣∣∣∣ ≤ C ′ρn .
2. Let f(x) is periodic with period 2π, for simplicity in formulas. Then f is

analytic with radius of convergence r if the derivatives of f satisfy (with
some constant C) ∣∣∣f (n)(x)

∣∣∣ ≤ Cn!

rn
, for all x . (2) db

Here, f (n) is the n−th derivative of f , and the same constants r and C
work for every n. The Fourier series representation of f is

f(x) =
∞∑

k=−∞

eikxf̂k .

The Fourier coefficients are given by

f̂k =
1

2π

∫ 2π

0

e−ikxf(x) dx .

(a) Show that if f is analytic, then the Taylor series converges as long
as |y − x| < r:

f(y) =

∞∑
n=0

(y − x)n

n!
f (n)(x) .

(This is from basic calculus, put here to remind you why the bound
(
db
2) makes sense.)

1

(b) Show that if k 6= 0 and for any n ≥ 0,

f̂k =
1

2π

1

(ik)n

∫ 2π

0

e−ikxf (n)(x) dx .

(c) Show that if f is analytic in the sense of (
db
2), then, for any k 6= 0 and

n ≥ 0, ∣∣∣f̂k∣∣∣ ≤ Cn!

|rk|n
.

(d) Stirling’s approximation (also called Stirling’s formula) is

n! ≈
√

2πnnne−n .

This is accurate in the sense that as n→∞,

n!−
√

2πnnne−n

n!
→ 0 .

This is called relative accuracy in numerical computing. For now,
ignore the “prefactor”

√
2πn and use the simpler but less accurate

approximation
n! ∼ nne−n .

The ∼ instead of ≈ indicates is for “is something like” instead of “is
approximately equal to”. Show that if the simpler “approximation”
were an equality, then there is ρ < 1 and C so that∣∣∣f̂k∣∣∣ ≤ Cρ|k| .
Hint: choose n proportional to k in the part (c) inequality.

(e) Use the actual Stirling approximation (with relative accuracy) and
the result of exercise (1) to show that the Fourier series representation
of f is geometrically efficient if f is analytic.

3. The cubic b−spline basis is a family of cubic b−splines bj(x) with the
property that bj(xj) = 1 and bj(x) = 0 unless xj−2 < x < xj+2. If j = 0
or j = 1 then bj(x) = 0 if x ≥ xj+2. If j = m or j = m−1, then bj(x) = 0
if x ≤ xj−2.

(a) Show that any cubic b−spline may be written in the form

f(x) =

m∑
j=0

wjbj(x) .

(b) Show that the coefficients wj may be found by solving a tridiagonal
system of linear equations of the form Aw = F , where the interpola-
tion conditions are f(xj) = Fj , for j = 0, . . . ,m.

2

(c) Show that if the knot points xj are evenly spaced then A has 1 on
the diagonal and 1

4 on the subdiagonal and superdiagonal.

4. Here is a PDE model, where u(x, t) models the temperature at location x
at time t.

∂tu = ∂2
xu+ u2 +A

u(0, t) = u(L, t) = 0 .

The first equation says that heat diffuses (the ∂2
x term) and is produced

uniformly (the A term) and that there is a temperature dependent chem-
ical reaction (the u2 term). We will take A ≥ 0 (so heat is produced,
not absorbed or lost) and u(x, t) ≥ 0. The second line is boundary condi-
tions giving the temperature at the ends of the computational domain. A
steady state would have ∂tu = 0. The equation or a steady state is

∂2
xu+ u2 +A = 0 . (3) ss

The boundary conditions are the same. This exercise involves calculating
steady states, if they exist. We consider a finite dimensional approxima-
tion space Sh that consists of continuous and piecewise linear functions
with knots at 0 = x0 < x1 < · · · < xn+1 = L. We will write U ∈ Sh when
U is such a function. There is a variational formulation of the steady state
PDE that uses the functional

F (u) =
1

2

∫ L

0

(∂xu(x))
2
dx − 1

3

∫ L

0

u(x)3 dx − A

∫ L

0

u(x) dx .

(a) The “gradient” of F (actually called the first variation and written
v = δF (u)) is a function v defined by∫ L

0

w(x)v(x) dx =
d

ds
F (u+ sw)

∣∣∣∣∣
s=0

.

Show that if u and w are twice differentiable and satisfy the boundary
conditions, then

δF (u) = −∂2
xu− u3 −Au .

Conclude that if δF (u) = 0, then u satisfies the steady state equation
(
ss
3). This is a variational formulation of the steady state equation.

(b) A Galerkin approximation scheme (Boris Galerkin was a Russian
computational scientist) is to look for U ∈ Sh that satisfies the vari-
ational formulation as well as possible. The discrete functional is

Fh(U) = F (U) .

Since Sh is an n−dimensional vector space, we can form the n−
dimensional gradient

∇Fh(u) .

3

Suppose the nodal values are U(xk) = Uk. Find explicit formulas for
the gradient

Gk = ∂Uk
Fh(U) .

Find explicit formulas for the Hessian matrix elements

Hjk = ∂Uj∂Uk
Fh(U) .

The Hessian turns out to be tri-diagonal. The Galerkin approxima-
tion is U with ∇Fh(U) = 0, which is the sam as Gk(U) = 0 for all
k.

(c) Show that if U = 0, and if the xk are uniformly spaced, then H is
the matrix of the second difference approximation to ∂2

x.

5. Write code in Python to evaluateG andH and use this to look for solutions
of the Galerkin approximations using Newton’s method. For this you will
have to form the tri-diagonal matrix H and solve linear systems HV = G.
You may use the appropriate Python linear algebra routines. Specifically,

(a) Write code that takes an n−component vector U (the nodal values)
and calculates the number Fh(U), The n−component vector G(U),
and the Hessian matrix H(U). Write a separate routine that uses
finite differences to check that ∇Fh = G and the derivatives of G
are the entries of H. For this, estimate ∂Uj

Fh(U) by 1
2∆U (Fh(U +

ej∆U)−Fh(U−ej∆U). Here, ej is the n− component vector with all
zeros except for 1 in component j. Use a similar formula to estimate
the entries of H from G. Check all the components of G and all
the entries of H in this way. This is just a check of programming
correctness, so you can run the test with modest value of n, but not
too small.

(b) Neglect the nonlinear term and compute the solution, and compare it
to the exact solution, which has the form u(x) = B(x− L

2)2), where
B is related to A. How accurate is the solution on a uniform mesh?
Try to explain this accuracy.

(c) Without neglecting the nonlinear term, explain why we might expect
that u(x) ≈ u0(x) = B(x− L

2)2) for small A.

(d) Write the Newton solver using initial guess u0 in part (c). Do not use
safeguards such as line search. The Newton solver should converge
rapidly if A is small.

(e) Write a continuation method, which uses an increasing sequence 0 <
A1 < A2 < · · · For each Ak, solve the equations using your Newton
solver. Take the initial guess to be the Ak−1 converged solution. This
will work if the Ak increase slowly enough and if the Ak are not too
big.

(f) The solution ‘blows up” (goes to infinity) for some A < A∗. Use your
code to identify A as well as you can. What does the solution look
like close to A?

4

(g) Try to compute the solution more accurately near A by choosing the
breakpoints xk in a way that clusters them.

5

