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1 Introduction

A collective mode is a function of the state u(x) that has a large range in the
target distribution ρ but moves little in one MCMC step. It’s not important to
quantify this qualitative idea in detail, but you could take the ratio of the mean
square change in one MCMC step divided by the static variance as a measure
of slowness

S(u) =
Eρ

[
(u(X1)−X0)

2
]

varρ(u(X))
.

If u makes this S(u) small, then it takes many MCMC steps to move u from one
end of its range to the other. Such slow functions u are often collective modes in
that they depend on all the components of x in some way. Exercise 3 of Week
7 illustrated that local potential wells can lead to slow modes. Many collective
mode phenomena are more subtle than this.

This class will give some examples of high dimensional distributions where
common MCMC methods have slow collective modes. These are just exam-
ples because whatever theory there is beyond these examples is both deep and
model specific (not general). Nevertheless, the examples motivate some fancier
“moves” (MCMC transformations) that reduce auto-correlation times by mov-
ing collective motes more.

The examples come from lattice models in statistical physics. These models
are easy to describe and get some intuitions about. It is an active part of research
in MCMC to adapt ideas and methods that work on these simple models to other
problems in Bayesian statistics and other more modern MCMC applications.

2 Lattice models

A lattice is a periodic regular network of points in Rn. Since we’re mostly
interested in intuition, we will stick to the simple integer lattice, which is all
j = (j1, · · · , jn) ∈ Zn. In words, this is points in Rn with all integer coordinates.
Such a j is a lattice site. At every lattice site there is a variable or small
collection of variables, which we will call the field variable or lattice variable,
Xj . The collection of all lattice variables is the lattice field, X:

X = {Xj , j ∈ the lattice } .

We are interested in physical problems, so the dimension of the lattice usually
will be n = 1, 2, 3. A four dimensional lattice (the fourth dimension representing
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something related to time) is important in lattice QCD, which is how particle
physicists compute predictions of fundamental theories of elementary particles.

For computing, we make the lattice finite with lattice size L. This means
that we have separate lattice variables only for lattice sites with coordinates in
the range from 0 to L − 1, which is written 0 ≤ jk < L for k = 1, · · · , n. The
set of all lattice sites in this box is our finite size lattice, which we call

Λ = {0, · · · , L− 1}n .

We would say there are L lattice sites in each direction, so the total number of
lattice sites is |Λ| = Ln. If the lattice variable Xj has r components, then the
lattice field has d components with

d = r |Λ| = rLn .

The lattice field is
X = {Xj | j ∈ Λ} .

The probability distribution is determined by the temperature and the lattice
energy φ(x). The probability density is

ρ(x) =
1

Z(β)
e−βφ(x) .

Many questions in statistical physics involve understanding how Z(β) and ρ
depend on β.

One class of models is the gaussian free field model. This model is considered
trivial in statistical physics because it is easily solvable and the solution doesn’t
do much by statistical physics standards. That said, it is a good place to start
when thinking about lattice field models and MCMC methods for them. For
this model, r = 1 and Xj is a single real number. The lattice energy may be
written (explanations below)

φ(x) =
1

2

∑
〈ij〉

(xi − xj)2 +m
∑
j∈Λ

x2
j

 . (1)

The notation 〈ij〉 refers to bonds between nearest neighbors in Λ. Lattice sites
i and j are nearest neighbors if they differ only in one coordinate and that
coordinate differs only by ±1. Each nearest neighbor pair is a bond. The first
sum on the right is a sum over bonds and the second is a sum over sites. The
constant m in the second sum is called “mass” because it represents mass in
some quantum mechanical application.

The terminology is related to the atomic structure of simple crystals. We
imagine that there is an atom at every lattice site and a chemical bond that
connects the atom at each site to each of its nearest neighbors. Our integer
lattice would be called a cubic lattice, because it consists of a regular array of
cubes with lattice sites at the corners. The lattices of most common crystals are
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not not cubic. For example, diamond is a crystal made up of carbon atoms. Each
carbon atom (you may remember from elementary chemistry) makes bonds with
four other carbon atoms. But a site in a cubic lattice has six nearest neighbors,
two in each coordinate direction. The actual arrangement of carbon atoms in
diamond is called diamond cubic, and can be found at Wikipedia. Each site in
a diamond cubic lattice has four nearest neighbors.

A finite lattice Λ has boundary sites, which are sites that have at least one
nearest neighbor that is not in Λ. Boundary conditions say what to do with
the terms 〈ij〉 when i ∈ Λ and j /∈ Λ. Here are three commonly used boundary
conditions.

• Free boundary conditions. The first sum in (1) includes terms 〈ij〉 with
both i ∈ Λ and j ∈ Λ. The lattice field X is “free” because it is not
influenced by anything outside the lattice.

• Dirichlet boundary conditions. Take Xi = 0 for any i /∈ Λ. This sets the
field to zero at the boundary.

• Periodic boundary conditions. This makes the field Xj a periodic function
of j with period L in each direction. Let m be one of the directions
1 ≤ m ≤ n and em the corresponding unit vector in the m direction. X
is periodic if the value at j + em is the same as the value at j for each m.
You can implement periodic boundary conditions by getting the value Xi

if i /∈ Λ by copying from the unique image of i that is in Λ.

The effects of boundaries and boundary conditions are called finite size effects.
These describe the difference between a lattice and an ideal infinite lattice with-
out boundaries. A real crystal is not infinite, but is likely have more sites
(atoms) than will fit in a simulation. Many simulations choose periodic bound-
ary conditions to reduce finite size effects, as the periodic field has no boundary.
The Gaussian free field with energy (1) has finite variance with m = 0 only for
Dirichlet boundary conditions. Otherwise, a constant field xj = c for all j ∈ Λ
has φ(x) = 0. This gives the x = c mode infinite variance.

The field energy (1) is a model of lattice deformations at finite temperature.
The field variable Xj might represent the displacement of the atom at site j
from it’s resting place exactly at site j. If m = 0, then then the forces on atom
j are only from the neighbors. If the j + e1 atom is displaced to the right, this
pulls the atom at j to the right also. The “mass” part of the energy, which is
the second sum in (1) represents a force that makes an atom “want” to be at it’s
equilibrium position regardless of where its neighbors are. You might wonder
where a force like that would come from. The model with m = 0 makes sense
only with Dirichlet boundary conditions.

Another class of models is spin models, where Xj represents the orientation
of the “spin” of atom j. In this context, “spin” refers to the fact that an atom
can act like a small magnet, in part because of the electrons going around the
nucleus making a small current. [Feel free to look up “spin” in Wikipedia for a
more accurate version of this explanation.] In this model, a “spin” at site j is a
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unit vector |Xj | = 1. Different spin models have spins in different dimensions.
The Ising model has a one dimensional spin variable. A one dimensional variable
with length 1 has two possible values Xj = ±1. The state Xj = +1 is called
spin up, and Xj = −1 is spin down. The XY model has a two dimensional
spin variable, which is the same as giving an angle: Xj = (cos(θj), sin(θj)).
The Heisenberg model has a three dimensional spin variable. Normally, spin
orientations would be random, so the net magnetic field from the crystal would
be tiny. Ferromagnetic materials (iron is Fe(something) in Latin) have the
surprising property that neighboring spins “like to” line up. [This is a quantum
mechanical effect called exchange energy.] The energy for a spin field is given

by (1), with m = 0. The mass is irrelevant because |Xj |2 = 1 always.
Spin models models were created to model ordinary iron magnets. A piece

of iron can hold a magnetic field after it is magnetized. If the metal is heated
above the Curie temperature (about 700◦C for iron), it looses its magnetism and
stops being ferromagnetic. This is explained by the probabilities

ρ(x) =
1

Z
exp

−β∑
〈ij〉

|Xi −Xj |2


A bond 〈ij〉 is aligned if Xi = Xj (both up or both down) and misaligned if
one is up and the other down. The energy of an aligned bond is zero and a
misaligned bond is 2. Therefore, spin fields with more aligned bonds are more
likely. How strong this effect is depends on the temperature parameter β. This
leads to a dramatic prediction called phase transition, which is the mathematical
explanation of the Curie temperature. There is a critical (inverse) temperature
βc so that if β > βc (low temperature) there is a net mean magnetization
(defined below), while if β > βc, there is none. This is a phase transition
from the magnetized phase (low temperature) to the unmagnetized phase (high
temperature). The transition happens as β goes from β > βc to β < βc. The
behavior near β = βc is critical behavior, which is observed in experiments and
computations but hard to understand theoretically. Computational studies of
critical behavior motivated much research on MCMC methods, including the
“Multigrid Monte Carlo” method I was involved with.

Phase transitions have are about the behavior of observables that are bulk
quantities. “Bulk” means an average of some local quantity over the lattice.
The net magnetization is an example

M =
1

|Λ|
∑
j∈Λ

Xj .

The mean of this is zero, by symmetry (“flipping” every spin doesn’t change
probabilities). But the mean square is not zero

m2(β, L) = Eβ
[
M2
]
.

This depends on the temperature and the lattice size. The infinite volume limit
is the limit as the lattice becomes infinite. I hope it is plausible that the infinite

4



volume limit of square mean magnetization exists

m(β) = lim
L→∞

m2(β, L) .

MCMC studies of spin models use large lattices because people are interested in
the infinite volume limit. [Physical crystals in the lab are bigger than computa-
tional crystals, even with the best supercomputers.] The Ising model magnetic
phase transition is that in more than one dimension (n > 1) m2(β) = 0 for
β < βc (above critical temperature) and m2(β) > 0 if β > βc (low tempera-
ture).

The non-zero net mean magnetization is a consequence of long range corre-
lations between spins. The distance k correlation (actually, covariance) is

Ck(L) = cov(Xj , Xj+k) .

For any fixed offset k, the infinite volume limit exists:

Ck = lim
L→∞

Ck(L) .

At high temperature, we have only “short range” correlations, which means that
Ck → 0 as |k| → ∞. It can be shown that the rate is exponential in the high
temperature phase. There is a correlation length ξ(β) > 0 so that

Ck(β) ∼ e−
|k|
ξ(β) .

The correlation length diverges to infinity as you approach the critical temper-
ature, by a power law (it turns out)

ξ(β) ∼ (βc − β)
−ν

as β → βc , β < βc .

For β > βc,
lim
|k|→∞

Ck(β) > 0 .

Distant spins remain positively correlated at any distance. This makes the frac-
tion of up-spins different from the fraction of down-spins and leads to net mean
square magnetization. The power ν is a critical exponent. Critical phenomena
and critical exponents are studied by Monte Carlo. It takes large lattices to
estimate ν accurately.

Here is a some historical irony. What we call the Ising model was invented by
Dutch physicist Lenz for his student Ising to study. Ising showed that there is no
phase transition in one dimension. It is “easy” to show that Ck → 0 exponen-
tially for n = 1 and any β ≥ 0. Ising went on to give an incorrect argument that
there is no phase transition in two or three dimensions either. This mistaken
conclusion was accepted by the physics community until the German/English
physicist Peierls proved was mistaken a decade later, but without a quantita-
tive understanding of critical exponents. The Ising model in two dimensions
was essentially solved by Norwegian physicist Onsager in what may be one of
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the top ten most surprising and beautiful calculations of all time. In the mean
time Heisenberg studied the more realistic Heisenberg model (three dimensional
spin orientation) to escape Ising’s conclusion. It is a deep theorem (“dynamic
mass generation”) that the Heisenberg model has exponentially decaying Ck in
n = 2 dimensions for any β.

3 Critical slowing down

A starting MCMC algorithm for the Ising model would be that one MCMC step
is a sweep through the sites in the lattice doing heat-bath re-sampling of each
spin. If we are interested in the mean magnetization, we measure the functional
that involves the spin variable at site j after k heat bath sweeps through the
lattice:

Mk =
1

|Λ|
∑
j∈Λ

Xj,k .

The steady-state lag-t correlation function for this is

ρt(β, L) = corrρ,β(Mt,M0) .

This formula has multiple conflicts of notation: ρ on the left is the time correla-
tion, but in corρ,β ρ is the Gibbs Boltzmann distribution for inverse temperature
β. The correlation corρ,β refers to the correlation at inverse temperature β as-
suming that the lattice spin field X0 is already in the target distribution. Here
are the sad facts about this correlation function. For β ≤ βc, the limit exists:

ρt(β) = lim
L→∞

ρt(β, L) .

For β < βc, this correlation decays exponentially

ρt(β) ∼ exp

[
− t

τexp(β)

]
.

The constant τexp(β) is the exponential autocorrelation time. This is related
to the integrated auto-correlation time (what we called correlation time) close
to the critical temperature. Critical slowing down is the observed fact that
τexp(β)→∞ as β → βc. This makes Monte Carlo study of critical phenomena
very expensive if you use single site heat bath MCMC sampling.

There is an intuitive picture of critical slowing down that guides a search
for better MCMC strategies. The picture is that when β < βc but close, there
is a long correlation length ξ(β). Sites closer together than ξ have correlated
spins. If Xj = +1 (spin up), then if |i− j| < ξ(β), then Xi is more likely to
be up than down. This suggests that that sites around site j form a “magnetic
domain” that is overall spin up on average. The lattice consists of up and down
domains of roughly this size. The heat bath resampler is not good at moving or
flipping magnetic domains. Suppose site j is in a spin up domain. Then when
you resample Xj , its neighbors are more likely to be up than down. Therefore,
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the new Xj is more likely to be up than down. Even if the new Xj is down,
the spins in its domain are majority spin up. For this reason, it takes many
sweeps for the magnetic domain structure to change significantly. To be clear,
this picture is heuristic and not completely accurate. These domains are not
precisely defined. Even though the spins in a spin up domain are majority up,
there will be a positive fraction (but less than half) of down spins. Domains
have irregular shapes and sizes.

Large but finite magnetic domains in a near critical Ising model are the
collective phenomenon responsible for critical slowing down. A better sampler
should have a way to flip large numbers of spins at once. In general, “collective
mode” MCMC methods try to move collective modes. It turns out to be hard
to create collective mode samplers that are correct.

4 Swendsen Wang algorithm

The Swendsen Wang algorithm is an MCMC sampler designed for the Ising
model. The idea applies to other models, but the range of application is limited.
Still, it is an inspiring example of that clever MCMC ideas can accomplish.

The Swendsen Wang algorithm creates bond variables n〈ij〉 for each nearest
neighbor bond 〈ij〉. These are called bond occupation variables. The possible
values are n〈ij〉 = 1 (occupied), and n〈ij〉 (unoccupied). Occupied bonds are
allowed only between sites with aligned spin. A bond between misaligned spins
must be unoccupied:

Xi 6= Xj =⇒ n〈ij〉 = 0 .

A bond between occupied spins may be occupied or not. The probability of
being occupied is

p = 1− e−2β . (2)

The algorithm uses connected components of the bond graph. The bond
graph has lattice sites as vertices and occupied bonds as edges. Sites i and j are
in the same connected component if there is a path from i to j that uses only
occupied bonds. These connected components are called connected clusters.
Every site in a connected cluster has the same spin, because a bond between
sites of different spin cannot be occupied. There are relatively simple algorithms
to identify the connected clusters, including the path compression algorithm
whose analysis made Robert Tarjan famous (as in office hours or look it up).
One Swendsen Wang MCMC step starts with a spin field Xk. It first generates
a bond field nk according to the rules above: misaligned (nearest neighbor pairs
〈ij〉 with Xi,kXj,k = −1) bonds are unoccupied (n〈ij〉 = 0) and aligned bonds
(Xi,kXj,k = +1) are occupied with probability (2). All occupation choices are
independent. Next, the algorithm decomposes Λ into conected clusters for the
bond field nk with occupation variables n〈ij〉,k. Finally, the spins in each cluster

are flipped (+1 ↔ −1) with probability 1
2 with all flips independent. Near the

critical point, with long correlation length, there will be large clusters for the
algorithm to flip. This leads to faster decorrelation.
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Computational experiments with this algorithm show that critical slowing
down is a lot less, but is not eliminated. The integrated auto-correlation time
tau(β) still blows up like a power of βc − β. But the power is so much lower
that you have to do careful experiments to see that the critical exponent is
not zero. Several people have claimed to have “multi-level” versions of the
Swendsen Wang algorithm without critical slowing down. As far as I can see,
and according to people more expert than me, none of these claims is true.

Why the algorithm is correct – see the beautiful paper of my former col-
laborators Robert Edwards and Alan Sokal, Physical Review Letter, September
1988.

The Swendsen Wang algorithm has been extended to apply to other prob-
lems, but its range of application is limited. To illustrate this, here is a problem
it cannot be applied to, as far as I know. Here is a model of lattice phase sep-
aration that is close to the Ising model. Suppose there are two kinds of atoms
A and B that may occupy the sites of a lattice. Suppose A atoms like other
A atoms and B atoms like other B atoms more than they like A atoms. An
energy function for this would be a sum over nearest neighbor bonds with a +1
for every A− B bond and 0 for every A− A or B − B bond. This is the same
as the Ising energy, with A for Xj = −1 and B for Xj = +1. The difference
is that atoms can move but they cannot change type (flip). In the language
of the Ising model, we restrict to configurations with a specified total magneti-
zation. There is a local MCMC algorithm for this, called Kawasaki dynamics.
You sweep through the bonds and propose moves that exchange the spins (A
or B) on a bond. This “works” but has bad auto-correlation times. There’s no
method for this problem that is significantly better.

5 Exercises

A few to be added.
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