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1 Symplectic integrators, Hamiltonian samplers

Hamiltonian MCMC relies on the fact that the flow map or solution map of a
Hamiltonian system is volume preserving. To explain that, suppose y ∈ Rd and
z = F (y) with z ∈ Rd. The jacobian matrix is J(y) with entries

Jij(x) = ∂yjFi(y) .

The mapping F is one to one if F (y) 6= F (y′) whenever y 6= y′. If A ⊂ Rd is
any region, we write F (A) = {F (y)|y ∈ A}. This is the image of A under the
mapping F . The mapping is volume preserving if vol(F (A)) = vol(A) for any
region A where F is defined. If F is one to one and differentiable, then F is
volume preserving if and only if

det(J(y)) = 1 , for all y .

A volume preserving transformation also preserves probability density. Suppose
Y ∼ ρy(y) and Z = F (Y ), then Pr(Z ∈ F (A)) = Pr(Y ∈ A) for any set A,
whether or not F is volume preserving. The probability density transformation
formula has a jacobian factor. If Z ∼ ρz(z) (OK, terrible notation!), then if
z = F (y), then

ρz(z) = det(J(y))−1ρy(y) .

In particular, if F is volume preserving, then the PDF doesn’t change, in the
sense that

ρz(F (y)) = ρy(y) .

This makes volume preserving maps useful for MCMC.
The differential equations (9) and (10) from Week 6 are a Hamiltonian sys-

tem. Associated to any ODE system is a flow map that maps the initial data
to the solution after a fixed amount of time. Consider solving (9) and (10) with
initial data (

x(0)
p(0)

)
=

(
x0
p0

)
The solution a time t later is (

xt
pt

)
=

(
x(t)
p(t)

)
The flow map is

F (x0, p0, t) = (xt, pt) .
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We don’t have a formula, but you could compute F by solving the differential
equation system numerically. The flow map for a Hamiltonian system is volume
preserving.

The Verlet method for solving the Hamilton equations uses variables xk ≈
x(tk) and pk+ 1

2
≈ p(tk + 1

2∆t). Here, ∆t is the time step and tk = k∆t. The

notation tk+ 1
2

= tk + 1
2∆t fits with this. The algorithm is

xk+1 = xk + ∆t pk+ 1
2

(1)

pk+ 1
2

= pk− 1
2
−∆t∇φ(xk) . (2)

The Verlet method is second order accurate because the variables are staggered.
the momentum variables are defined only in the midpoints of the x intervals
and vice versa. The special structure of this Hamiltonian system makes this
possible, where ẋ depends only on p and ṗ depends only on x. This Verlet
method (there are variants with similar properties) is also volume preserving.
For this define

y =

(
xk
pk− 1

2

)
=

(
x
p

)
, z =

(
xk+1

pk+ 1
2

)
=

(
x′

p′

)
. (3)

The time step equations may be written

x′ = x+ ∆t p′

p′ = x−∆t∇φ(x) .

The jacobian is the 2× 2 block matrix

J =

(
∂xx

′ ∂px
′

∂px
′ ∂pp

′

)
.

Each of the blocks is a d×d matrix. It is important that ∂xx
′ = I+∆t∂xp

′ 6= I.
This is a consequence of the staggered scheme (3) Exercise 1 asks you to see
how this leads to det(J) = 1.

The Verlet method (3) has a property stronger than being volume preserving.
It is symplectic. The Hamiltonian flow also has this property, and it is important
for some change of variable tricks of classical mechanics. Any symplectic map
is volume preserving. It takes some time to explain symplectic form, but once
you’ve figured that out, the calculations to show a map is symplectic are easier
than the calculations to show it’s volume preserving.

The actual Hamiltonian sampler with finite ∆t is derived from an ideal
sampler with ∆t = 0. The ideal sampler uses partial resampling and a combi-
nation of two “moves”. One of the moves it to evolve according to Hamilton’s
equations (9) and (10) of Week 6. The fact that Hamilton’s equations preserve
the Gibbs Boltzmann distribution is a big part of Boltzmann’s reasoning behind
the Gibbs Boltzmann distribution. We know that Hamilton’s equations preserve
ρ(x, p) = 1

Z e
−βH(x,p) because the flow is volume preserving and also preserves
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H. The other move is to resample the momentum variables P . Exercise 2
explains how this may be done.

The actual Hamiltonian sampler has to deal with the fact that the Verlet
dynamics does not preserve H exactly. One view (almost universally accepted
in the molecular dynamics community) is to take a small ∆t > 0 and hope that
the error from not solving Hamilton’s equations exactly is small. The other view
(almost universally accepted outside the molecular dynamics community) is to
Metropolize (apply a Metropolis rejection) to preserve the Gibbs Boltzmann
distribution exactly even for finite ∆t. To do this (details omitted), you do
some number of Verlet steps and compute the Hamiltonian at the new point
and compute the Metropolis Hastings ratio and accept with the Metropolis
Hastings probability. If you reject (this is the crucial and brilliant observation),
you have to reverse the momentum variable, replacing P with −P .

2 Exercises

1. Consider the Verlet method (3) in one dimension. Write φ′ for ∇φ. As-
sume φ′′ exists and show that

det

(
dx′

dx
dx′

dp
dp′

dx
dp′

dp

)
= 1 .

2. Suppose we want to sample X ∼ N (0, C), where C = H−1 is a d × d
covariance matrix with information matrix H. [Everywhere else this week,
H is the Hamiltonian.] The random number generator can make i.i.d.
scalar standard normals, which fit together to form the components of
the d component standard normal Z ∼ N (0, I). Find conditions on the
matrices A and B so that the following linear iteration preserves N (0, C):

Xk+1 = AXk +BZk .

Show that this is equivalent to the relation between a and b we had before
in the scalar case. Give an algorithm to resample the momentum variables
without changing the position variables in the canonical ensemble with
inverse temperature β. Hint. Try A − aI. You might think independent
resampling (heat bath or Gibbs sampler) is best because it forgets the old
P . But it turns out to be better in many cases to keep the old momentum
so that the sample keeps moving in the same direction.

3. This exercise requires large amounts of numerical experimentation and
curiosity. Please write some paragraphs describing your research findings
and conclusions.

Consider a probability density ρ(x) = e−βφ(x). A well (or potential well)
is a local minimum of φ. The depth of the well is the minimum height
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above the minimum it takes to go to another well. Consider the famous
model double well potential

φ(x) = (x2 − 1)2 + αx .

For α = 0 the wells have equal “depth” and are equally likely. For α > 0
but small, the well near x = −1 is deeper roughly by 2α. Run an MCMC
sampler (Gaussian proposal Metropolis) for various values of the proposal
step size and inverse temperature and α. Make plots of Xk as a function
of k. At high temperature and for long runs, these just look like noise. At
low temperature, you will see the algorithm “get stuck” in one well or the
other. Make plots of the autocorrelation function of Xk and X2

k for various
parameter values and comment on the differences. Comment on the the
best value of the proposal size at high and low temperatures. What is
the acceptance probability as a function of the temperature for the best
proposal size. A good proposal size is one that gives low auto-correlation
time. It is a common problem in MCMC that the algorithm seems to have
converged from looking at plots of Xk or even the auto-correlation function
but has not converged. That can happen in this problem. Suggest some
practical steps you might take for this problem to detect that there might
be a problem.

4. Describe in as much detail as you can your thoughts on a project for the
class. Say who your partners are if you have partners. Otherwise, say
you’re looking for a partner or want to work alone. If you con’t have a
specific topic, give a topic area or a field. If you don’t have a field, say
enough about your background and goals that I can suggest somethong.
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