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1 Background from statistical physics

Statistical mechanics is important to Monte Carlo. Many of the target appli-
cations for Monte Carlo come from statistical mechanics, sometimes with other
subject names such as “physical chemistry” or “molecular dynamics”. More-
over, ideas and intuition from statistical mechanics helps us understand high
dimensional problems from statistics and other sources. The “physical” picture
is helpful for Monte Carlo even if you’re not interested in physics. Here we give
some of the terminology, intuition, and elementary examples. It obviously is
not a substitute for a real course.

A “statistical” description of a system might mean specifying a probability
distribution of the possible states rather than specifying a specific state. A sta-
tistical description may be appropriate for a large complex system. An example
would be the molecules that make up the air in a room. There are too many
molecules to say where they all are. The precise locations are irrelevant for the
properties we are interested in, such as pressure.

Notation. The notation this week will switch between two contradictory sys-
tems. Sometimes, x ∈ Rd will be the state and φ(x) will be the potential, with
PDF ρ(x) = 1

Z e
−φ(x). Sometimes, there will be momentum variables p ∈ Rd.

In that case, the state will be y = (x, p) ∈ R2d, The Hamiltonian (or small
“h” hamiltonian) will be H(x, p) = φ(x) + 1

2p
tM−1p, and the PDF will be

ρ(y) = ρ(x, p) = 1
Z e
−H(x,p). If there is a temperature, it will be called T

or possibly kT or kBT . The parameter k or kB is a physical constant called
Boltzmann’s constant. The PDF will be

ρ(x) =
1

Z(T )
e−

φ(x)
kT or ρ(x, p) =

1

Z(T )
e−

H(x,p)
kT . (1)

We may use the inverse temperature, which is β = 1
kBT

. In that case the PDF
is

ρ(x) =
1

Z(β)
e−βφ(x) or ρ(x, p) =

1

Z(β)
e−βH(x,p) . (2)

Either of these formulas is the canonical ensemble. Ensemble is a French word
that means “set” or “collection”. The canonical ensemble is a collection of
states, the state space, together with a probability, or probability density, for
each state.

The total energy of a moving system is the sum of its kinetic and potential
energy. The potential energy is φ(x). The kinetic energy is 1

2p
tM−1p. The
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total energy is called the hamiltonian. There are situations where you neglect
momentum and kinetic energy. If you do that, only the potential remains. In
either case, the canonical ensemble PDF is proportional to e−β energy.

Here is a vague description of the picture that leads to the canonical dis-
tribution (1). You start with a system and some dynamics on the system that
preserves energy. The Boltzmann ergodic hypothesis is that this dynamics visits
every state on the energy surface equally often. This leads to a uniform prob-
ability distribution on the energy surface, which is called the micro-canonical
ensemble. It is “micro” because it’s smaller than the “full” canonical ensemble,
being restricted to an energy surface. This is what a system would do if it no
interaction with the outside world.

A canonical ensemble system is nearly but not completely isolated from the
outside world. An example might the collection of air molecules in a room that
interact mostly with each other but do sometimes bounce off the walls. The
picture is that interacting with the outside world changes the energy a little bit
but the internal dynamics still works to keep each state with a given energy
equally likely. That makes the PDF of the system a function of energy alone.
The canonical distribution (1) has this property.

What I called the “outside world” is sometimes called a heat bath. Heat,
in this context, means thermal energy. Thermal energy means energy stored in
small scale motion of parts (molecules) rather than large scale motion. If the air
were all moving in one direction (wind), there would be kinetic energy that we
don’t count as heat. But the kinetic energy in the random motions of individual
molecules is heat energy. The “bath” part of “heat bath” refers to our system
being surrounded by a larger system, like someone in a bathtub surrounded by
water (particularly if it’s a small person in lots of water). The “total system”
is the original system and the bath (outside world) together. The total system
can conserve energy while energy flows back and forth (is “exchanged”) between
the original system and the heat bath (outside world). A completely isolated
system would have a fixed energy, but a system in weak contact with a heat
bath does not. It is contact with the heat bath that leads the system to the
probability density (1). This is the origin of the term heat bath algorithm. You
bring one variable Xj into its own probability density by “touching it to a heat
bath”.

The probability distributions (1) and (2) have the property that low en-
ergy states have higher probability than high energy states. The temperature
parameter determines how strong is the preference for low energy. For high
temperature, or low β, the energy matters less. For low temperature, high β
only states near the minimum energy states have much weight.

2 Simulated annealing

Simulated annealing is an optimization algorithm that is based on the Gibbs
Boltzmann distribution (2). This is used to find points near the ground state,
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which minimized φ. In this algorithm, you have a cooling sequence or cooling
schedule, which is a sequence of inverse temperatures βn →∞. For each n, you
use some MCMC algorithm to sample

ρn(x) =
1

Zn
e−βnφ(x) .

When you are done with ρn, you lower the temperature and do it again. Let

X
(n)
k be the MCMC chain for βn. The starting point of an MCMC chain is not

“typical”, but the ending state should be if the chain length is long relative to

the auto-correlation time. Therefore, even if X
(n)
0 is not a good sample of ρn,

the ending state X
(n)
N should be. We take the starting point of the next chain

to be the ending point of the last one, which is X
(n+1)
0 = X

(n)
N . You choose the

cooling schedule so that βn+1 is not very much larger than βn. In that way, a

sample X
(n)
N should be a reasonable starting point to sample ρn+1.

Simulated annealing is used to overcome the problem of a complex energy
landscape with many local minima. Energy landscape refers to the shape of the
graph of φ(x). A simple energy landscape would be something like a parabolic

bowl φ(x) = |x|2. A local minimum is an x∗ so that φ(x) > φ(x∗) if x is close
enough to x∗. Technically, x∗ is a strict local minimum of φ if there is an r > 0 so
that if |x− x∗| ≤ r, then φ(x) > φ(x∗). A complex energy landscape typically
has lots of local minima. The energy barrier or depth of a local minimum is
the amount of energy that it takes to “escape”. This is the minimum extra
energy it takes to go from x∗ to a state with equal or lower energy. Technically,
a path from x∗ to x1 is a continuous function of t so that x(t = 0) = x∗ and
x(t = 1) = x1. The maximum potential on a path is maxφ(x(t)). A path
escapes the local minimum if φ(x1) ≤ φ(x∗). The barrier is

∆φ = min
esc

max
t∈[0,1]

φ(x) .

The subscript esc means “escaping paths”, which means paths with x(0) = x∗
and x(1) = x1, and |x1 − x∗| ≥ r.

Local minima are the bane of traditional gradient based optimization meth-
ods. These methods try to find the global minimum of φ by taking steps, called
iterates with φ(x(n+1)) < φ(x(n)). An example is simple gradient descent

x(n+1) = x(n) − sn∇φ(x(n)) . (3)

The step size parameter sn is also called the learning rate. If this is small, then
a Taylor series calculation shows φ decreases:

φ(x(n+1)) = φ(x(n))−
[
∇φ(x(n))

]
sn∇φ(x(n)) +O(s2n)

= φ(x(n))− sn
∥∥∥∇φ(x(n))

∥∥∥2 +O(s2n)

< φ(x(n)) .
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Typical optimization packages choose sn to insure that φ decreases. They
take gradient step (3) only as a proposal. Then they evaluate φ(x(n+1)). If
φ(x(n+1)) > φ(x(n)), they reject (in out terminology) sn and try again, typi-
cally with 1

2sn. The Taylor series calculation shows that you get descent if sn
is small enough.

3 Hamiltonian sampler

The Hamiltonian sampler is a way to build momentum into an MCMC sampler.
Momentum is what makes things moving in some direction want to keep moving
in that direction. Our first MCMC sampler was Metropolis rejection built on a
symmetric Gaussian proposal with some proposal step size r. If the proposals
from Xk and Xk+1 are independent with mean zero, which makes them steps
from a random walk. This makes them likely to go in orthogonal directions and
have less net motion than if they had gone in the same direction. Hamiltonian
sampling augments the state space and doubles the dimension by adding a
momentum variable that remembers direction.

It’s easy to think you want to carry auxiliary variables that make the sampler
more systematic, but it’s hard to find methods that preserve the target density
ρ. That’s what makes Hamiltonian sampling important, both as a tool and as
a way to think about augmenting the state space.

The Hamiltonian sampler grew out of the Hamiltonian formalism of clas-
sical mechanics, which is a mathematical formalism for “F = ma” Newtonian
mechanics. I explain how the sampler was invented using the picture from
mechanics. But the sampler itself applies to problems that do not come from
physics. The components of xj do not have to be coordinates and the “mass
matrix” (see below) can be any symmetric positive definite matrix. I hope the
physics picture helps you see “what’s going on.” If the Hamiltonian stuff is
new to you, be aware that it was “old hat” to the people who invented the
Hamiltonian sampler. They knew about phase apace volume conservation and
the Gibbs-Boltzmann distribution. Their contribution was realizing that it led
to a powerful MCMC algorithm, which is a brilliant contribution.

Newtonian mechanics describes the motion of “particles” (objects) depend-
ing on the forces between them. The position variables consist of all the coor-
dinates of all the particles collected into a vector x(t) ∈ Rd. It may not be as
simple as d = 3n for n particles in three dimensions, for example, because some
of the variables might be angles. The components of x may be called general-
ized coordinates, but I just call them coordinates. Hamiltonian mechanics is for
forces that come from a potential energy function φ(x). The force on coordinate
j is

Fj(x) = −∂xjφ(x) .

If the “mass” (generalized mass?) of coordinate j is mj , then F = ma for that
coordinate is

mj
d2xj
dt2

= −∂xjφ(x) . (4)
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In vector form, F = ma becomes

M
d2

dt2
x = −∇xφ(x) . (5)

The ∇x means “gradient with respect to x”. This is redundant now, because
there is no other variable the gradient could be with respect to. The M on the
left is a diagonal matrix with masses mj on the diagonal. For the Hamiltonian
sampler, you can use any symmetric positive definite “mass matrix”.

The momentum variable corresponding to xj is

pj = mj
dxj
dt

.

The dynamical equations (4) can be written using the momentum variables in
the form

dpj
dt

= −∂xjφ(x)

dxj
dt

=
1

mj
pj .

The vector form is

d

dt
p = −∇xφ(x) (6)

d

dt
x = M−1p . (7)

The equations (5) are “second order” because they involve second derivatives.
The equations (6) and (7) are an equivalent set of first order equations. The first
one (6) says that the force pushes on coordinate xj by changing its momentum.
The second one (7) says that x goes in the direction of its momentum, redirected
by the mass matrix M . It is typical to take M = cI in MCMC applications
that don’t come from physical problems. In that case, x moves in the direction
of p. If φ is constant, then F = −∇xφ = 0 so there is no force. In this case p
does not change and x moves in a straight line.

The pair of dynamical equations (6) and (7) may be expressed in terms of
derivatives of the Hamiltonian function (or just Hamiltonian

H(x, p) = φ(x) +
1

2
ptM−1p . (8)

The first term is potential energy φ(x). The second term is kinetic energy, which
is the energy of motion. If the mass matrix is diagonal, then the kinetic energy
is

KE =
1

2
ptM−1p =

1

2

d∑
j=1

1

mj
p2j =

1

2

d∑
j=1

mjv
2
j , vj =

d

dt
xj .
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The last form may be familiar to people who have learned Newtonian mechanics.
You can check that

∇xH(x, p) = ∇xφ(x)

∇pH(x, p) = ∇p
1

2
ptM−1p = M−1p .

Therefore, the equations of motion may be written in Hamiltonian form as

d

dt
p = −∇xH(x, p) (9)

d

dt
x = ∇pH(x, p) . (10)

These equations are nearly symmetric, with ∇x in the p equation and ∇p in the
x equation, except that the p equation has a minus sign. Why is it useful to
put the Newtonian dynamics in Hamiltonian form? You can get a sense of their
convenience by verifying conservation of energy, which is the fact that if x and
p evolve according to Hamiltonian dynamics, then the Hamiltonian is constant.
In problems from mechanics, the Hamiltonian is the total energy (potential plus
kinetic), but in other problems, it’s just the Hamiltonian. The conservation law
is

d

dt
H(x(t), p(t)) = 0 . (11)

The calculation behind this is just the chain rule, which uses the minus sign in
(9). The arguments x and p are left out after the first line to un-clutter the
formulas

d

dt
H(x(t), p(t)) = [∇xH(x(t), p(t))]

t d

dt
x+ [∇pH(x(t), p(t))]

t d

dt
p

= [∇xH]
t∇pH − [∇pH]

t∇xH
= 0 .

This calculation works even if the Hamiltonian is not a sum of the form (8). For
example, it works if you add xtp to H. Hamiltonians like this have important
use in mechanics, but not yet in MCMC.

In the rest of this section, we call x the position variable and p the momen-
tum. We call the combined vector the state variable and denote it

y =

(
x
p

)
.

The state variable has 2d components, which are d position components and
d momentum components. If you know x(0) and p(0), then you can solve the
dynamical equations (9) and (10) to calculate x(t) and p(t) for other t values.
That justifies calling the combination the “state” of the mechanical system.
The state space is the set of all possible states, which is R2d. The Hamiltonian
sampler samples a PDF in state space f(x, p). This samples original

ρ(x) =
1

Z
e−φ(x) , (12)
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because ρ is the marginal density of f :

ρ(x) =

∫
Rd
f(x, p) dp . (13)

If you have a sequence of samples Yk = (Xk, Pk) ∼ f , then the position parts Xk

are samples of ρ. This would be pointless if you had to use symmetric Gaussian
proposal Metropolis to sample f . You would have a 2d dimensional sampler
that most likely would be worse than the d dimensional sampler.

The Hamiltonian sampler samples the Gibbs Boltzmann distribution

f(x, p) =
1

Z
e−H(x,p) . (14)

[Gibbs is the American physicist and mathematician who discovered the “Gibbs
phenomenon” in Fourier series. Boltzmann is the Austrian physicist who gave
the modern definition of entropy and invented the term and the concept of
ergodic dynamics.] This satisfies the marginal distribution formula (13) because
of the sum structure (8) of the Hamiltonian, as we now verify. The value of the
normalization constant Z is different in different places. The important thing
is that each Z is a constant independent of x and p.∫

Rd
f(x, p) dp =

1

Z

∫
Rd
e−φ(x)−

1
2p
tMp dp

=
1

Z
e−φ(x)

∫
Rd
e−

1
2p
tMp dp

=
1

Z
e−φ(x)

The crux is ∫
Rd
e−

1
2p
tMp dp = something independent of x.

I might call the function e−
1
2p
tMp “Gaussian” or “quadratic exponential”, but

in this context, when it is a quadratic exponential of the momentum variable, it
is called the Maxwellian. When the total energy (8) depends on the momentum
through a position-independent quadratic, then the Gibbs Boltzmann distri-
bution depends on the momentum as a Maxwellian. [Maxwell was a Scottish
physicist who put the finishing touch on the equations that govern the inter-
action between electric and magnetic fields, now called Maxwell’s equations.
These explain the until then mysterious numerical relation c = 1√

εµ , where

c ≈ 3 · 108 m
sec , ε is a constant related to electricity and µ is a constant related

to magnetism. Maxwell suggested the Maxwellian distribution of momentum.
He also wrote what is considered the first technical paper on control theory:
On Governors. A flyball governor is a mechanical device that controls steam
engines.]

4 Exercises
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