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Class notes: Monte Carlo methods
Week 5, Auto-correlation, Hamiltonian sampling
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October 7, 2020

1 Auto-correlation, Kubo formula, linear alge-
bra

To review, we’re talking about MCMC. We have a sequence Xk and a time
series Vk = V (Xk). The quantity we want and the quantity we have are

B = Eρ[V (X)] , B̂N =
1

N

N∑
k=1

Vk .

To estimate the error bar, we want

σ2
N = var

(
B̂N

)
.

This is given by

σ2
N =

1

N2

N∑
k=1

N∑
j=1

cov(Vj , Vk) .

The steady state lag t auto-covariance function is

Ct = covρ(V (X0), V (Xt)) = lim
k→∞

covρ0(V (Xk), V (Xk+t)) .

The Kubo formula is the approximate formula that holds when N is large

σ2
N ≈

1

N

∞∑
k=−∞

Ct . (1)

This formula holds for “good” MCMC algorithms. See below for more on what
makes a good algorithm. This is the formula we will explain. It is equivalent to
what we had last week.

We write it as

σ2
N ≈

S

N
.

Here, S is the sum

S =

∞∑
t=−∞

Ct . (2)
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You factor out the static variance, which is C0 = varρ(V (X)).

σ2
N ≈

1

Neff
varρ(V (X)) (3)

Neff =
N

τ
(4)

τ =

∞∑
−∞

Dt , Dt =
Ct
C0

= corrρ(V (X0), V (Xt)) . (5)

We explain the Kubo formula (1) for a “good” MCMC algorithm. We call
an MCMC algorithm “good” if it has the following properties:

cov(V (Xj), V (Xk))→ covρ(V (X0), V (X|j−k|)) as j →∞ , k →∞ (6)

cov(V (Xj), V (Xk))→ 0 as |j − k| → ∞ (7)

In that case, if N is large, then most of the terms of the sum have j and k large
enough for (6), which gives

1

N2

N∑
k=1

N∑
j=1

cov(Vj , Vk) ≈ 1

N2

N∑
k=1

N∑
j=1

C|k−j| .

Most of the terms here have k large and N − k large. Therefore, for most terms
we have

N∑
j=1

C|k−j| ≈
∞∑

j=−∞
C|k−j| =

∞∑
t=−∞

Ct = S . (8)

To see this, consider the terms added for j ≤ 0. If k is large, then these added
terms are

0∑
−∞

C|k−j| .

We use the approximation (8) and get

1

N2

N∑
k=1

N∑
j=1

cov(Vj , Vk) ≈ 1

N

{
1

N

N∑
k=1

[ ∞∑
t=−∞

Ct

]}

=
1

N

{
1

N

N∑
k=1

S

}

=
S

N
.

We look for a practical error bar estimator based on the Kubo formula (1).

We start with the time series Vk, compute the sample mean V = B̂N , and the
empirical covariance function

Ĉt =
1

N − t

N−t∑
k=1

(Vk − V )(Vk+t − V ) . (9)
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This can be expensive to calculate directly when N is large because there are
O(N2) terms. The same empirical auto-covariance function can be calculated
using the FFT in O(N log(N)) work. We approximate the infinite sum (2) by
a finite sum

ŜM = Ĉ0 + 2

M∑
t=1

Ĉt . (10)

Note that the sum on the right is over positive t but Ct is a symmetric function
of t, so the terms with t > 0 are counted twice. Now you just pick M and you’re
done.

It seems natural to a lot of terms to get an accurate approximation of the
infinite sum (2). Don’t do this because it is an inconistent estimator. Suppose

Q is some quantity we want to estimate and Q̂N is an estimator (a family of

estimators depending on N). The estimator Q̂N is weakly consistent if Q̂N → Q
as N → ∞ in probability. Convergence in probability means that for every
ε > 0, the probability of being wrong by ε goes to zero

Pr
( ∣∣∣Q̂N −Q∣∣∣ ≥ ε)→ 0 , as N →∞ .

An estimator is strongly consistent if

Q̂N → Q , as N →∞ almost surely .

I won’t explain or use almost sure convergence. There is a mean-and-variance
criterion for weak consistency that is simple to understand and use. The bias
of an estimator is the error in its expected value

bN = E
[
Q̂N

]
−Q . (11)

You could put Q inside the expectation because Q is not random. An esti-
mator is unbiased if bn = 0. That’s not common in MCMC. An estimator is
asymptotically unbiased if

bN → 0 , as N →∞ . (12)

An estimator that is not asymptotically unbiased can be consistent, but only
(as far as I know) in very contrived examples. The variance of the estimator is

vN = var
(
Q̂N

)
(13)

It is an exercise (literally, exercise 1) to show that if the variance goes to zero
and if it is asymptotically unbiased, then it is weakly consistent. I will say that
an estimator is inconsistent in the mean-variance sense if it fails to satisfy one
of these conditions. Strictly speaking, an estimator could be weakly consistent
without being consistent in the mean-variance sense, but this never happens in
practice, as far as I know.
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The bias in our estimator Ŝ comes from the terms Ct left out of the sum
because M <∞. This goes to zero asymptotically if M →∞ as N →∞. The
estimator we ultimately propose does not have this property, so it is slightly
biased. The variance of ŜN is sort of proportional to M/N . This means that
if you take, say, M = 1

2N , then the variance does not go to zero as N → ∞.

Roughly speaking, the terms Ĉt for large t have mean more or less equal to
zero, but variance on the order of 1

N . If you add O(N) of them together, and

if they were independent, the variance would be O(1). The fact that Ĉt is not

independent of Ĉt+1 should make this worse. If you want more convincing,
exercise 2 gives an example where you can calculate everything, if you have the
patience and interest.

I have been using a self consistent window estimator proposed by Alan Sokal.
This takes M to be a multiple of the estimated auto-correlation time. The
multiplier is the window size, w

Ŝ = Ĉ0 + 2

wτ̂∑
t=1

Ĉt (14)

τ̂ = 1 +
2

Ĉ0

wτ̂∑
t=1

Ĉt . (15)

The estimator is self consistent because it must be consistent with itself. The
estimate of τ used to cut off the sum is the same as the estimate of τ produced
by the cut-off sum. I typically take w = 5 or w = 10. A larger w gives less bias
but more variance. Here is a code sketch showing how keep adding to the sum
until the estimate of τ becomes self consistent:

th = 1 # the t=0 contribution to tau hat

t = 0

while (1):

if ( t < w*th): # end of the window?

break # the self consistent window

t = t + 1

th = th + 2*C[t]/C[0] # the next term in the sum

if ( t == N): # explained below

complain # the run was too short

There is a problem called spectral density estimation that is related to auto-
correlation time. Te sum S in (2) is the spectral density at frequency zero
(whatever that means). Spectral density estimation also has the issue that too
much data (take too many terms in the sum), leads to large variance. They
propose a similar solution, which they call a window estimator, or smoothing
(for reasons I don’t want to explain). This is like cutting the sum (10) at M and
asking the “user” (the person doing the density estimation) to pick M . Some
codes have a specific choice, such as M = 100 built in. I think this is dangerous
for MCMC because you do not know in advance what order of magnitude τ will
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have. If τ = 10, then M = 100 is probably fine. If τ = 1000, then M = 100
gives a serious under-estimate of τ and a serious under-estimate of σ2

N .
In my opinion, error bar estimation still is a major open problem for MCMC

practice. I don’t know a better estimator than the self consistent window (15),
but I know a few worse ones that are used in practice. One common way is to
run L independent MCMC chains and getting that many independent samples
B̂jN , for j = 1, · · · , L. Because these are independent, you can use the sample

variance of the separate estimators B̂jN

σ2
N = varB̂N ) ≈ 1

L

L∑
j=1

(
B̂jN − B̂N

)2

The problem with this is that it doesn’t protect you from having a run that
is too short: N ∼ τ . The total number of MCMC steps is NL. It would
have been more accurate to take a single run of length NL and use the self
consistent estimator. It makes sense to take random and independent starting
configurations

Xj
0 ∼ ρ0 .

But this is not much help if ρ0 is not typical of the target distribution ρ. We
saw in the one sided pinned walk that is it hard to pick a good starting point
that is typical of the eventual distribution.

2 Finite state space and eigenvalues

As has been mentioned before, you can learn what to expect using the case of
a finite state space, and eigenvalues and eigenvectors of the transition matrix,
R. Here is a formula for the steady state auto-covariance function in terms of
eigenvalues and eigenvectors. Recall that

Rij = Pr(Xk+1 = j | Xk = i) = Pr(i→ j in one hop) .

Powers of the transition matrix give transition probabilities after more hops.
Let Rtij be entry (i, j) of Rt. Then

Rtij = Pr(Xk+t = j | Xk = i) = Pr(i→ j in t hops) .

We let πij be the joint distribution of Xk and Xk+t in the steady state. Without
loss of generality we take k = 0. The joint distribution is

πij = Prρ(Xt = j and X0 = i) .

This is found using Bayes’ rule of conditional probability:

Prρ(Xt = j and X0 = i) = Pr(Xt = j | X0 = i) Prρ(X0 = i)

πij = Rtijρi .
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Without loss of generality, we may assume Eρ[V (X)] = 0. We write Vi for V (i)
Then

covρ(V (X0), V (Xt)) = E[V (X0)V (Xt)]

=

n∑
i=1

n∑
j=1

πijViVj

Ct =

n∑
i=1

n∑
j=1

RtijρiViVj (16)

Ct = 〈V,RtV 〉ρ (17)

In the last line 〈·, ·〉ρ is the ρ−inner product, which is defined by

〈V,W 〉ρ =

n∑
i=1

ViWiρi .

We think of V as a column vector with components Vi. Then W = RtV is the
vector with components

Wi =

n∑
j=1

RtijVj .

Let rj be the right eigenvectors of R. By convention

r1 = 1 =


1
1
...
1


This satisfies Rr1 = r1, so λ1 = 1, because R is a stochastic matrix. The other
eigenvectors and eigenvalues satisfy

Rrj = λjrj .

If the chain is non-degenerate (as we will show!), |λj | < 1 if j 6= 1. We suppose
that there are n linearly independent eigenvectors and n corresponding eigen-
values, which do not have to be real if R does not satisfy detailed balance. The
observable V may be expressed in terms of right eigenvalues and weights aj

V =

n∑
j=2

ajrj .

The sum leaves out the term j = 1 because Eρ[V ] = 0. This is justified in
exercise 3 Therefore

RtV =

n∑
j=2

λtjajrj . (18)
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We put this into (17) and get the desired expression

Ct =
∑
j 6=1

wjλ
t
j , wj = 〈V, ajrj〉ρ . (19)

The formula for τ follows from this, but you have to sum a geometric series.
The terms with t < 0 involve |t| because C−t = Ct.

∞∑
−∞

λ|t| = 1 + 2

∞∑
1

λt

= 2

{ ∞∑
0

λt

}
− 1

=
2

1− λ
− 1

=
1 + λ

1− λ
.

Therefore

S =
∑
j 6=1

wj
1 + λj
1− λj

.

The static variance is

C0 = Eρ[V
2] = 〈V, V 〉 =

∑
j 6=1

wj .

Combining these gives

τ =

∑
j 6=1 wj

1+λj

1−λj∑
j 6=1 wj

. (20)

The weights wj are the same in the numerator and denominator. This is natural
in view of the fact that auto-correlation time does not depend on the size of
V . The observable 2V has the same auto-correlation time. The weights in the
numerator are modified by the factor

1+λj

1−λj
. This is large if λj is close to 1. If

λ = 1− g and g is small, then we have about 2
g , which we saw on the homework

for week 4.
The first formula (19) tells us what the auto-covariance function might look

like. It decays to zero as t→∞ at a rate determined by the spectral gap

g = 1−max
j 6=1
|λj | .

A typical problem has a range of eigenvalues, some not close to 1 and others
closer. For small values of t, the λtj decreases rapidly if λj is not close to 1.
This can make the overall Ct decrease rapidly at first. The rate of decrease can
slow once the “energy” from the “rapidly decaying modes” is gone. A graph
of Ct typically has a slope that is steep for small t and becomes less steep as t
increases, leaving only the slowly decaying modes.
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This means you have to be careful about estimating τ . There can be a
large contribution from an eigenvalue close to 1 even if it has a small weight.
If you stop the sum auto-covariance (10) too soon (M too small), you can miss
this small slowly decaying “tail” that can have a large “mass” (sum). For that
reason, I prefer to take w rather large (say, w = 10) in the self-consistent window
algorithm. This almost certainly leads to a less accurate estimate of τ . But we
should not “put error bars on error bars”. We are looking for a rough estimate
of error size, so knowing τ precisely is not important. What is more important
is getting a warning when the run length N is too short. For w = 10, you need
N ≥ 20τ or the error bar code above will complain that N is too small. That
means Neff ≥ 20.

In many applications you do a sequence of MCMC runs for different cases,
such as models with different parameters. Even an MCMC expert does not
want to examine the auto-covariance function for each case. Also common
is someone using an MCMC code who doesn’t know about auto-correlation,
although he/she may be aware in qualitative terms that it is an issue. An
MCMC code should warn such a user that her/his N is too small. For these
reasons, it is good practice to give loud warnings if the software “thinks” that
the run is too short.

3 Hamiltonian sampler

The Hamiltonian sampler is a way to build momentum into an MCMC sampler.
Momentum is what makes things moving in some direction want to keep moving
in that direction. Our first MCMC sampler was Metropolis rejection built on a
symmetric Gaussian proposal with some proposal step size r. If the proposals
from Xk and Xk+1 are independent with mean zero, which makes them steps
from a random walk. This makes them likely to go in orthogonal directions and
have less net motion than if they had gone in the same direction. Hamiltonian
sampling augments the state space and doubles the dimension by adding a
momentum variable that remembers direction.

It’s easy to think you want to carry auxiliary variables that make the sampler
more systematic, but it’s hard to find methods that preserve the target density
ρ. That’s what makes Hamiltonian sampling important, both as a tool and as
a way to think about augmenting the state space.

The Hamiltonian sampler grew out of the Hamiltonian formalism of clas-
sical mechanics, which is a mathematical formalism for “F = ma” Newtonian
mechanics. I explain how the sampler was invented using the picture from
mechanics. But the sampler itself applies to problems that do not come from
physics. The components of xj do not have to be coordinates and the “mass
matrix” (see below) can be any symmetric positive definite matrix. I hope the
physics picture helps you see “what’s going on.” If the Hamiltonian stuff is
new to you, be aware that it was “old hat” to the people who invented the
Hamiltonian sampler. They knew about phase apace volume conservation and
the Gibbs-Boltzmann distribution. Their contribution was realizing that it led
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to a powerful MCMC algorithm, which is a brilliant contribution.
Newtonian mechanics describes the motion of “particles” (objects) depend-

ing on the forces between them. The position variables consist of all the coor-
dinates of all the particles collected into a vector x(t) ∈ Rd. It may not be as
simple as d = 3n for n particles in three dimensions, for example, because some
of the variables might be angles. The components of x may be called general-
ized coordinates, but I just call them coordinates. Hamiltonian mechanics is for
forces that come from a potential energy function φ(x). The force on coordinate
j is

Fj(x) = −∂xj
φ(x) .

If the “mass” (generalized mass?) of coordinate j is mj , then F = ma for that
coordinate is

mj
d2xj
dt2

= −∂xj
φ(x) . (21)

In vector form, F = ma becomes

M
d2

dt2
x = −∇xφ(x) . (22)

The ∇x means “gradient with respect to x”. This is redundant now, because
there is no other variable the gradient could be with respect to. The M on the
left is a diagonal matrix with masses mj on the diagonal. For the Hamiltonian
sampler, you can use any symmetric positive definite “mass matrix”.

The momentum variable corresponding to xj is

pj = mj
dxj
dt

.

The dynamical equations (21) can be written using the momentum variables in
the form

dpj
dt

= −∂xjφ(x)

dxj
dt

=
1

mj
pj .

The vector form is

d

dt
p = −∇xφ(x) (23)

d

dt
x = M−1p . (24)

The equations (22) are “second order” because they involve second derivatives.
The equations (23) and (24) are an equivalent set of first order equations. The
first one (23) says that the force pushes on coordinate xj by changing its mo-
mentum. The second one (24) says that x goes in the direction of its momentum,
redirected by the mass matrix M . It is typical to take M = cI in MCMC ap-
plications that don’t come from physical problems. In that case, x moves in the
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direction of p. If φ is constant, then F = −∇xφ = 0 so there is no force. In this
case p does not change and x moves in a straight line.

The pair of dynamical equations (23) and (24) may be expressed in terms of
derivatives of the Hamiltonian function (or just Hamiltonian

H(x, p) = φ(x) +
1

2
ptM−1p . (25)

The first term is potential energy φ(x). The second term is kinetic energy, which
is the energy of motion. If the mass matrix is diagonal, then the kinetic energy
is

KE =
1

2
ptM−1p =

1

2

d∑
j=1

1

mj
p2
j =

1

2

d∑
j=1

mjv
2
j , vj =

d

dt
xj .

The last form may be familiar to people who have learned Newtonian mechanics.
You can check that

∇xH(x, p) = ∇xφ(x)

∇pH(x, p) = ∇p
1

2
ptM−1p = M−1p .

Therefore, the equations of motion may be written in Hamiltonian form as

d

dt
p = −∇xH(x, p) (26)

d

dt
x = ∇pH(x, p) . (27)

These equations are nearly symmetric, with ∇x in the p equation and ∇p in the
x equation, except that the p equation has a minus sign. Why is it useful to
put the Newtonian dynamics in Hamiltonian form? You can get a sense of their
convenience by verifying conservation of energy, which is the fact that if x and
p evolve according to Hamiltonian dynamics, then the Hamiltonian is constant.
In problems from mechanics, the Hamiltonian is the total energy (potential plus
kinetic), but in other problems, it’s just the Hamiltonian. The conservation law
is

d

dt
H(x(t), p(t)) = 0 . (28)

The calculation behind this is just the chain rule, which uses the minus sign in
(26). The arguments x and p are left out after the first line to un-clutter the
formulas

d

dt
H(x(t), p(t)) = [∇xH(x(t), p(t))]

t d

dt
x+ [∇pH(x(t), p(t))]

t d

dt
p

= [∇xH]
t∇pH − [∇pH]

t∇xH
= 0 .

This calculation works even if the Hamiltonian is not a sum of the form (25). For
example, it works if you add xtp to H. Hamiltonians like this have important
use in mechanics, but not yet in MCMC.
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In the rest of this section, we call x the position variable and p the momen-
tum. We call the combined vector the state variable and denote it

y =

(
x
p

)
.

The state variable has 2d components, which are d position components and
d momentum components. If you know x(0) and p(0), then you can solve the
dynamical equations (26) and (27) to calculate x(t) and p(t) for other t values.
That justifies calling the combination the “state” of the mechanical system.
The state space is the set of all possible states, which is R2d. The Hamiltonian
sampler samples a PDF in state space f(x, p). This samples original

ρ(x) =
1

Z
e−φ(x) , (29)

because ρ is the marginal density of f :

ρ(x) =

∫
Rd

f(x, p) dp . (30)

If you have a sequence of samples Yk = (Xk, Pk) ∼ f , then the position parts Xk

are samples of ρ. This would be pointless if you had to use symmetric Gaussian
proposal Metropolis to sample f . You would have a 2d dimensional sampler
that most likely would be worse than the d dimensional sampler.

The Hamiltonian sampler samples the Gibbs Boltzmann distribution

f(x, p) =
1

Z
e−H(x,p) . (31)

[Gibbs is the American physicist and mathematician who discovered the “Gibbs
phenomenon” in Fourier series. Boltzmann is the Austrian physicist who gave
the modern definition of entropy and invented the term and the concept of
ergodic dynamics.] This satisfies the marginal distribution formula (30) because
of the sum structure (25) of the Hamiltonian, as we now verify. The value of the
normalization constant Z is different in different places. The important thing
is that each Z is a constant independent of x and p.∫

Rd

f(x, p) dp =
1

Z

∫
Rd

e−φ(x)− 1
2p

tMp dp

=
1

Z
e−φ(x)

∫
Rd

e−
1
2p

tMp dp

=
1

Z
e−φ(x)

The crux is ∫
Rd

e−
1
2p

tMp dp = something independent of x.
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I might call the function e−
1
2p

tMp “Gaussian” or “quadratic exponential”, but in
this context, when it is a quadratic exponential of the momentum variable, it is
called the Maxwellian. When the total energy (25) depends on the momentum
through a position-independent quadratic, then the Gibbs Boltzmann distri-
bution depends on the momentum as a Maxwellian. [Maxwell was a Scottish
physicist who put the finishing touch on the equations that govern the inter-
action between electric and magnetic fields, now called Maxwell’s equations.
These explain the until then mysterious numerical relation c = 1√

εµ , where

c ≈ 3 · 108 m
sec , ε is a constant related to electricity and µ is a constant related

to magnetism. Maxwell suggested the Maxwellian distribution of momentum.
He also wrote what is considered the first technical paper on control theory:
On Governors. A flyball governor is a mechanical device that controls steam
engines.]

Background on statistical mechanics

Statistical mechanics is important to Monte Carlo. Many of the target appli-
cations for Monte Carlo come from statistical mechanics, sometimes with other
subject names such as “physical chemistry” or “molecular dynamics”. More-
over, ideas and intuition from statistical mechanics helps us understand high
dimensional problems from statistics and other sources. Here we give some of
the terminology and intuition. It obviously is not a substitute for a real course.

One part of “equilibrium statistical mechanics” is guessing what the steady
state PDF of of the state y might be. These are “physical” arguments related
to the dynamical equations (26) and (27) but not on the specific form of the
solution. They depend on three properties

1. Conservation of energy, (28).

2. Conservation of volume in phase space.

3. Dynamical chaos that forgets everything else.

Let A(t) be an n × n matrix. We use a dot to represent derivative with
respect to t, so, for any quantity Q(t)

Q̇ =
dQ

dt
.

d

dt
det(A) = tr

(
A−1Ȧ

)
(32)

4 Exercises

1. Show that if an estimator is asymptotically unbiased and if the variance
goes to zero as N → ∞, then it is weakly consistent. You may use
Chebychev’s inequality, which says that if X is any random variable, then

Pr
(
|X − E[X]| ≥ z

√
var(X)

]
≤ 1

z2
.
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The variable z is the number of standard deviations X is away from its
mean. Every math class should have at least one proof of this kind. If
you’re new to this kind of thing, start with the case of an unbiased esti-
mator. Then use the fact that if an → a and bn → b, then an+bn → a+b.
If bn is the bias, then asymptotically unbiased means b = 0.

Consider an estimator that is consistent in the mean-variance sense and
consider the following silly modification of it. Choose a sequence pN → 0
and WN →∞ and define

RN =

{
Q̂N +WN with probability pN
Q̂N with probability 1− pN .

This is a model of what would be a normal estimator but has a small
chance of being very wrong. Show that if Q̂N is weakly consistent, then
RN is weakly consistent. Show that if you choose pN and WN correctly,
you get a weakly consistent estimator that is not consistent in the mean-
variance sense, and may not be asymptotically unbiased.

2. This exercise is quite time consuming. Read it but please do not do it
unless you are finished everything else and are bored. Consider a linear
scalar auto-regressive process with X0 = 0 and

Xk+1 = aXk + Zk , Zk ∼ N (0, 1) i.i.d.

We use a part of Wick’s theorem that says if (Y1, Y2, Y3, Y4) is a four
component multivariate normal with mean zero, then

E[Y1Y2Y3Y4] = E[Y1Y2] E[Y3Y4] + E[Y1Y3] E[Y2Y4] + E[Y1Y4] E[Y2Y3] .

There must be some formula like this because everything about a Gaussian
is determined by second moments, so the fourth moment on the left must
be some function of the second moments on the right. The Yj do not
have to be distinct. The case Y1 = Y2 = Y3 = Y4 = Y gives the familiar
formula E[Y 4] = 3E[Y 2]2. Find an approximate formula for varŜ when N

is large. This will show that Ŝ is inconsistent in the mean variance sense
if M = CN for any C. With more calculations (please please don’t do
them), you would see that the estimator is also inconsistent in the weak
sense, as the phenomenon of exercise 1 does not happen.

3. Here are some linear algebra facts to verify. Always assume that there
are n linearly independent eigenvectors. The right eigenvector matrix is
the matrix with right eigenvectors as columns. It is called Q instead of R
because R is the transition matrix.

Q =

 | | · · · |
r1 r2 · · · rn
| | · · · |
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The inverse of Q is L. It satisfies QL = LQ = I. The rows of L are row
vectors lj , so

L =


−− l1 −−
−− l2 −−

...
...

...
−− ln −−


The eigenvalues are the diagonal entries of the diagonal eigenvalue matrix

Λ =


λ1 0 · · · 0
0 λ2 0
...

. . .
...

0 0 · · · λn


Assume that R represents a non-degenerate Markov chain.

(a) Show that RQ = QΛ and LR = RΛ and R = QΛL.

(b) Show that lj is the left eigenvector with ljR = λjLj .

(c) Show that we may take r1 to be the vector of all ones, and if we do
then l1 = ρ = the steady state probability distribution.

(d) Show that if V is a column vector with Eρ[V ] = 0, then the eigen-
vector representation of V does not involve r1 as in (18).

(e) Show that if R satisfies detailed balance with respect to ρ, then Ct ≥
0 for t even.
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