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1 Auto-correlation, theory and practice

As before, suppose ρ is a target probability distribution of X and we are trying
to estimate

B = Eρ[V (X)] .

We have samples Xk from an MCMC sampler of ρ. The estimate is

B̂N =
1

N

N∑
k=1

V (Xk) . (1)

The variance of the estimator will be written σ2
N :

σ2
N = var

(
B̂N

)
. (2)

Error bars for B̂N come from estimates of σ2
N .

A practical question for this week is: how do we estimate σ2
N? A theoretical

question is: how do we prove that σ2
N goes to zero as N →∞? Our answers to

these questions involves the steady state auto-covariance function

Ct = covρ(V (X0), V (Xt)) . (3)

The notation covρ means that we take the covariance under the assumption
that X0 ∼ ρ. It is impossible in practice to take X0 ∼ ρ, but this mathematical
quantity still is defined. It is meaningful because the lag t auto-covariance
converges to Ct for any starting distribution (if the chain is non-degenerate)

covρ0(V (Xk), V (Xk+t)) → Ct as k →∞ . (4)

This covρ0 means thatX0 ∼ ρ0. In a practical code, ρ0, the starting distribution,
may be that X0 = x0. This is a non-random start. Subsection ?? explains why
we expect this to be true. Note, now, that this limit also applies to −t, because
we can take k′ = k+ t and then Xk = Xk′−t. The steady state auto-covariance
function is a symmetric function of the lag, t:

C−t = Ct .

The correlation between two random variables is a dimensionless version of
the variance:

corr(U,W ) =
cov(V,W )√

var(U) var(W )
. (5)
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The lag t auto-correlation is the steady state correlation between V (Xk) and
V (Xk+t). The general correlation formula simplifies because the distribution
of V (Xk) is the same as the distribution of V (Xk+t). This makes the two
variance factors in the denominator of (5) equal to each other, and both are
equal to varρ(V (X0)) = C0. The numerator is the auto-covariance. We denote
the auto-correlation by Dt and have

Dt = corrρ(V (X0), V (Xt)) =
Ct
C0

. (6)

We call the denominator the static variance because it depends only on ρ and
not on the MCMC dynamics

C0 = varρ(V (X)) .

“Static” is the opposite of “dynamic”. Like the auto-covariance function, the
auto-correlation function may be defined as a limit starting from any starting
distribution and therefore is a symmetric function of t defined for all integers t:

Dt = lim
k→∞

corrρ0(V (Xk), V (Xk+t) ) .

The auto-correlation time (more properly, the integrated auto-correlation
time) is

τ =

∞∑
t=−∞

Dt =

∞∑
t=−∞

Ct
C0

. (7)

This is the τ described in (12) of the Week 3 notes. For large N , we have

σ2
N ≈

1

Neff
varρ(V (X)) , Neff =

N

τ
.

We will derive this formula in Section 5.

2 Partial resampling, Gibbs sampler

An MCMC move is a random function for constructing a Markov chain that pre-
serves the target distribution ρ. A move can be expressed through its transition
distribution R, or it can be expressed as a function with random inputs

Xk+1 = S(Xk, ξk) , ξk i.i.d. (8)

The function S(x, ξ) represents the actual MCMC code that takes the current
state Xk and some independent random input ξ and produces the next state
Xk+1. This preserves ρ if Xk ∼ ρ implies that Xk+1 ∼ ρ. We had the example
of the global move Gaussian proposal Metropolis move last week. Global means
that it moves all components of X.

It is possible to make an MCMC sampler by combining “local moves” that
change just one or a few components of the random object X = (X1, . . . , Xn).
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A single variable move would change only Xj , leaving the others the same.
Suppose ρ(x) is the target distribution. For each j, define xj to be component
j of x, and xcj to be the n− 1 component object with xj left out. For example,
if x = (2, 3, 5, 7, 11), then x3 = 5 and xc3 = (2, 3, 7, 11). The conditional density
of xj with the other components fixed is

ρj(xj | xcj) =
1

Z(xcj)
ρ(x) .

The normalization factor Z(xcj) is given by an integral that is usually impossi-
ble to compute in closed form. A partial resammpler is a function that moves
Xj in a way that preserves the conditional distribution of Xj given the re-
maining variables Xc

j . A partial resampler is a function Sj(xj , x
c
j , ξ) so that if

Xj ∼ ρj(·|xcj) and X̃j = Sj(Xj , X
c
j , ξ), then X̃j ∼ ρj(·|Xc

j ). Partial resamplers
may be practical because there are ways to sample one dimensional or low di-
mensional distributions. If you use a direct sampler to resample Xj ∼ ρj(·, Xc

j ),
that is called [The Gibbs sampler, or the heat bath. The term “Gibbs sampler”
is particularly unfortunate because it has nothing to do with any idea of the
American physicist and mathematician J. Willard Gibbs, the first American
physicist to achieve an “international” (European) reputation.] A partial re-
sampler does not have to be a direct sampler. For example, it could be a one
variable Metropolis move with a possibility of rejection.

It is “easy to see” that partial resampling preserves ρ. But a single par-
tial resampling does not produce the target distribution. A sweep through the
variables means

for j in range(n): # sweep through all the components

X[j] = resamp( j, X, rg) # resample X_j

One sweep changes every component. You can think of one sweep as being like
one global metropolis move.

3 Discrete state space

The theory of MCMC is simpler to explain when the state space is finite and
the MCMC “move” is given by an n×n stochastic matrix R. Most of the theory
applies to infinite or continuous state space. The transition matrix has elements
Rij = Pr(i → j) = Pr(Xk+1 = j|Xk = i). If Xk ∼ ρk, and ρk is represented
as a row vector, then ρk+1 = ρkR. This formula may be iterated. If m is any
positive integer, then

ρk+m = ρkR
m .

You find out what happens in m MCMC steps by taking the m−th power of
the transition matrix. Eigenvalues and eigenvectors help to understand powers
of matrices.
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We call R a stochastic matrix if Rij ≥ 0 for all i, j, and if

n∑
j=1

Rij = 1 , for all i . (9)

A transition matrix for a Markov chain is a stochastic matrix. The entries are
non-negative because the are probabilities. The row sums (9) are equal to 1
because the sum is over all possible values of Xk+1.

3.1 Degenerate and non-degenerate Markov chains

Consider three transition matrices

R =


1
2

1
2 0 0 0

1
3

1
3

1
3 0 0

0 1
3

1
3

1
3 0

0 0 1
3

1
3

1
3

0 0 0 2
3

1
3

 (10)

This is an example of a discrete random walk on a linear chain with reflecting
bounddary conditions at the ends. The state Xk can go to Xk+1 = Xk ± 1 or
Xk+1 = Xk with certain non-zero probabilities. If it tries to walk off an end
from Xk = 1 to Xk+1 = 0, or from Xk = n to Xk+1 = n + 1, that is rejected .
Here n = 5.

R =


1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2

 (11)

This consists of two blocks {1, 2} and {3, 4}. This R preserves the uniform
distribution ρ = ( 1

4 ,
1
4 ,

1
4 ,

1
4 ). There is no path from i = 1 to j = 3.

R =



0 1
2 0 0 0 1

2
1
2 0 1

2 0 0 0

0 1
2 0 1

2 0 0

0 0 1
2 0 1

2 0

0 0 0 1
2 0 1

2
1
2 0 0 0 1

2 0


(12)

This symmetric random walk on a ring of n = 6 states, this time with periodic
boundary conditions. That means that a 1→ 0 transition becomes 1→ n and
n → n + 1 becomes n → 1. The “stay” transitions i → i are forbidden. The
chain preserves the uniform distribution on n = 6 states.

The first example (10) is non-degenerate. The second one (11) is degenerate
because it is not strongly connected. The third one (12) is degenerate because
it is not acyclic.

4



A path (or allowed path) is a sequence of states P = (x0, x1, . . . , xL) so that
each transition xk → xk+1 is “allowed” in the sense that the probability of
this transition is not zero: Rxk,xk+1

> 0. The length of P is the number of
transitions, which is L. In the chain (12), the path P = (3, 4, 3, 2, 1, 6) is a path
of length 5 that connects x0 = 3 to x5 = 6. There is a path of length L from i
to j if and only if Pr(XL = j|X0 = i) > 0. This probability is(

RL
)
ij
.

Therefore, there is a path of length L from i to j if and only if the corresponding
matrix element is positive, RLij > 0. A transition matrix (or a Markov chain) is
non-degenerate if it is strongly connected and acyclic, which are defined here:

Strongly connected

We say that states i and j communicate if there is a path from i to j of some
length and a path from j to i of some possibly different length. The state
space S = {1, 2, · · · , n} may be divided into connected components, which are
subsets of S. Two states being in the same connected component means that
i and j communicate. The chain is strongly connected if every pair of states
communicates. That is, if i and j are any two states, then there is a path from
i to j. The examples (10) and (12) are both strongly connected. The example
(11) is not strongly connected. The connected components are {1, 2} and {3, 4}.

Suppose that there is a target distribution ρ with ρj 6= 0 for all j. Note that
if ρj = 0, we would be wise to leave j out of our state space because we want
a Markov chain that never visits j. For example, in the chain (11), if X0 = 1,
which is the same as ρ0 = (1, 0, 0, 0), then ρj,k = Pr(Xk = j) = 0 for j = 3 or
j = 4 for all k. This means it is impossible that ρk → ( 1

4 ,
1
4 ,

1
4 ,

1
4 ), which is the

target distribution. You can check that ρR−R, so ρ is invariant.

Acyclic

A path is a loop if it starts and ends at the same state, which is xL = x0. If P∞
and P∈ are two loops starting and ending at state i, then you can “compose”
the loops to get a loop of length L1 + L2 that starts and ends at i. You do one
loop and then the other. The chain is cyclic with cycle period m > 1 if every
loop on state i has a length that is a multiple of m. If the chain is strongly
connected, then every state has the same cycle period. [I’m not giving a proof,
but you can see it’s true in examples.] The ring example (12) has cycle period
2. Every loop has an even number of hops.

If R has a cycle period m > 1 then it is unlikely that ρk → ρ as k → ∞,
even if ρ is an invariant distribution. If you start with X0 = i, then ρi,k = 0 if k
is not a multiple of m. This is because there are no paths from i to i of length
k in that case. A ring with an even number of states has cycle period 2. A ring
with an odd number of states is acyclic (check this).
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Perron Frobenius and ergodic theorem

The Perron Frobenius theorem assumes that R is a stochastic matrix that is
strongly connected and acyclic. There are two conclusions

• There is a unique distribution ρ that is invariant under R (ρR = ρ).

• For any starting distribution ρ0, if ρk = ρ0R
k, then ρk → ρ as k →∞.

The examples (11) and (12) show that the second conclusion may not be true
if R is not strongly connected or if R is cyclic.

The ergodic theorem has the same hypotheses as the Perron Frobenius the-
orem. The ergodic theorem states that if V (x) is any “observable”, then

B̂N → B , as N →∞ . (13)

4 Review of linear algebra

This section describes parts of linear algebra that we need this week. These
relate to eigenvalues and eigenvectors of stochastic matrices and their relation
to decay of covariance functions. Eigenvalues and eigenvectors are useful for
describing powers of a matrix, the transition matrix in this case. Most of this
material is familiar to most students, but few students have seen all of it and
very few have seen it with the notation here. Linear algebra is an odd part of
mathematics. On one hand, most of it seems simple. But it is powerful. In the
decades since my first linear algebra, I think I have looked at something in a
new way or used it in a different way every year.

Suppose A is an n × n matrix. A left eigenvector is a row vector l, with
possibly complex entries, so that lA = λl for some possibly complex number λ.
A right eigenvector is a column vector r with possibly complex entries so that
Ar = λr. A complex number λ is an eigenvalue of A if there is a non-zero left
or right eigenvector corresponding to λ. The characteristic polynomial of A is
p(λ) = det(A− λI). If p(λ) = 0, then A− λI is singular, so there is a non-zero
r with (A − λI)r = 0. There also is a non-zero l so that l(A − λI) = 0. In
linear algebra, they say that being singular from the left is equivalent to being
singular from the right, or that row rank is column rank. Therefore, λ is a “left
eigenvalue” (there is a left eigenvector) if and only if λ is a “right eigenvector”.
We just call these numbers “eigenvalues”. Every polynomial has at least one
root, so every matrix has at least one eigenvalue.

The matrix A is diagonalizable if there are n linearly independent right
eigenvectors (or, equivalently, left eigenvectors). You might have the impression
that “most matrices” are diagonalizable, but there are matrices that are not
diagonalizable. For example,

A =

(
1 1
0 1

)
.
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You can check that if Ar = λr, then

λ = 1 , and r =

(
α
0

)
for some α.

Thus, you cannot find two linearly independent right eigenvectors of A. We will
see that the transition matrix of a Markov chain is diagonalizable if the chain
satisfies detailed balance, but possibly not otherwise.

You can understand upper Schur form by multiplying both sides by Q and
then looking at what the equation means in terms of vectors.

4.1 Upper Schur form

If a matrix is diagonalizable, then there is a basis in which the matrix is di-
agonal. If a matrix is not diagonalizable then this is impossible, by definition.
Even if a matrix is diagonalizable, the eigenvectors may be “almost linearly
dependent” in a sense we may come back to later in the course. If you base
a mathematical discussion on eigenvectors, then you constantly have to say “if
it’s diagonalizable, then · · · , otherwise · · · ”. The upper Schur form of a matrix
is a substitute for a diagonal form that is useful because every matrix has one
and because the Schur vectors are ortho-normal (definition below).

Suppose qk ∈ Cn is a collection of n column vectors with possibly complex
entries. These vectors form the columns of an n× n matrix

Q =


...

...
...

q1 q2 · · · qn
...

...
...

 .

If A is any matrix, then the adjoint matrix, or the conjugate transpose is the
matrix formed by taking the transpose and the complex conjugate of each entry.
We denote it by A∗.

A∗ij = Aji .

Suppose r is an n× 1 matrix, which may be thought of as a column vector,

r =


r1

r2

...
rn

 .

Then the following matrix product is a 1× 1 matrix, which may be thought of
as a number

r∗r =
(
r1 r2 · · · rn

)

r1

r2

...
rn

 = r1r1 + · · ·+ rnrn =

n∑
j=1

|rj |2 .
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This quantity is the square of the norm (more completely, the l2 norm) of r

‖r‖2 = r∗r .

A vector r is normalized if ‖r‖ = 1. Vectors r and s are orthogonal if r∗s = 0.
The family of vectors qj are orthonormal if

q∗i qj =

{
0 if i 6= j
1 if i = j .

The entries of Q∗Q are
(Q∗Q)ij = q∗i qj .

Therefore, the vectors qj are orthonormal if and only if Q has the property that

Q∗Q = I .

This means that Q∗ = Q−1. Any matrix commutes with its inverse, so Q∗Q = I
is equivalent to QQ∗ = I. A complex matrix with this property is called unitary.
A real matrix with this property is called orthogonal.

A unitary matrix Q puts A into upper Schur form if there is an upper
triangular matrix U so that

A = QUQ∗ .

The diagonal entries of U turn out to be the eigenvalues of A. The upper Schur
form has a lot in common with the Jordan canonical form, except that the Jor-
dan eigenvectors and generalized eigenvectors do not have to be ortho-normal,
and different matrices have Jordan canonical forms with different Jordan struc-
tures. [Ignore these statements if you don’t know Jordan form.]

AQ = QU

A


...

...
...

q1 q2 · · · qn
...

...
...

 =


...

...
...

q1 q2 · · · qn
...

...
...




λ1 u12 u13 · · · u1n

0 λ2 u23 u2n

0 0 λ3

...
...

. . .

0 · · · 0 λn




...
...

...
Aq1 Aq2 · · · Aqn

...
...

...

 =


...

...
...

λ1q1 λ2q2 + u12q1 · · · λnqn + u1nq1 + · · ·+ un−1,nqn−1

...
...

...


This says that

Aqj = λjqj + (linear combination of qi for i < j) .

This is
Aq1 = λ1q1
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and
Aq2 = λ2q2 + u12q1

and
Aq3 = λ3q3 + u13q1 + u23q2

and so on.

4.2 Detailed balance and Rayleigh quotients

Practitioners like detailed balance because it gives correct MCMC methods.
Theoreticians like detailed balance because the transition matrix is self adjoint.
This leads to real eigenvalues and orthogonal eigenvectors, in the weighted inner
product.

5 Auto-correlation time

6 Exercises

1. Suppose R1 and R2 are two “moves” (n× n stochastic matrices that pre-
serve ρ). Give an example to show that a “sweep” that does these two
moves might not have detailed balance even though R1 and R2 do have
detailed balance. Hint. The product of symmetric matrices does not have
to be symmetric.

2. Suppose R is an n×n stochastic matrix that is non-degenerate with respect
to ρ. Suppose V (x) is an observable and Ct is the lag t auto-covariance
function. Show that Ct ≥ 0 if t is even. Show that

τ ≤ 2

g
where g is the spectral gap.

3. You can calculate everything explicitly for the linear auto-regressive pro-
cess

Xk+1 = aXk + bZk , where Zk ∼ N (0, 1) , i.i.d.

Assume |a| < 1. We saw last week that the invariant distribution is
ρ = N (0, v), with a specific formula for v in terms of a and b. This
exercise is practice with geometric sums. It explains the intuition that
the auto-correlation time is a characteristic decay time for the MCMC
process.

(a) Take V (x) = x and calculate the auto-covariance Ct. Hint. You can
write Xt = atX0 + independent random variables.

(b) Calculate the sums of geometric series necessary to compute τ .

(c) Show that τ > 0 and decide whether τ < 1 is possible.
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(d) Now assume X0 = 0 and find a formula for wkN so that

B̂N =
1

N

N−1∑
k=0

wkNZk .

This involves more geometric series.

(e) Explain and calculate (approximately if necessary)

σ2
N =

N=1∑
k=0

w2
kN .

Show that this is approximately the same as v τN , where τ is from
part (b).

(f) We saw that the auto-covariance function is a geometric series, so Ct
is an exponential function of t for t > 0. The exponential decay time,
or the exponential auto-correlation time is that τexp so that

aτexp = e−1 .

This is the “time” (the number of iterations) needed for at to decay
from a0 = 1 to aτexp = 1

e . For this part only, assume 0 < a < 1.
Show that the exponential and the integrated auto-correlation times
both go to infinity as a goes to 1 and show that one is approximately
proportional to the other in that limit.

(g) (extra credit) Find the auto-correlation times for the observables
V (x) = xn and show that these are related to the eigenvalues of
the linear auto-regressive process from Exercise 1 of Week 3.

4. Suppose ρ0(x) is a probability density and we want to sample ρ0 with a
constraint that X ∈ A, for some set of allowed values A. That means that
the target density is

ρ(x) =
1

Z

{
ρ0(x) if x ∈ A
0 if x /∈ A .

Suppose there is a direct sampler that produces i.i.d. samples from the
unconstrained density ρ0. The rejection algorithm is explained in this not
quite complete piece of code.

while True:

X = rho_0_Samp(rg) # generate a proposal

if ( X is in A ): # need actual code for this test

break

Show that this is a direct sampler of ρ. Show that the expected number
of proposals (calls to rho 0 Samp) is equal to Prρ0(X ∈ A). This is an
example of rejection sampling from the proposal distribution ρ0.
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5. A Gaussian random walk is a path process that describes a random path
X with n steps X = (X1, . . . , Xn) that has independent Gaussian steps.
We normalize by assuming that the steps have mean zero and variance 1.
Step j is Xj+1−Xj . If X0, then the PDF of X is a multi-variate normal.
The random walk is pinned if Xn+1 = 0. The random walk is one sided if
Xj ≥ 0 for all j.

(a) Write a formula for the PDF of a Gaussian random walk with n steps.
Call this ρ0¿

(b) Write a formula for the PDF of a pinned random walk with n steps.
One way to do this is to write a formula for a random walk with n+1
steps and then take the conditional density with the condition that
Xn+1 = 0.

(c) Let X̃ be a Gaussian random walk with n+ 1 steps and define

Xj = X̃j −
j

n+ 1
X̃n .

Show that X is a pinned Gaussian walk with n steps. Use this to
describe a direct sampler for pinned Gaussian walks.

(d) Write a formula for the PDF of a pinned and one sided walk with n
steps (Xn+1 = 0). Note that the normalization constant is unknown.
It is related to the probability that a pinned walk is one-sided, which
there is (I believe) no formula for. Call this distribution ρ(x) =
ρ(x1, . . . , xn).

6. This computational exercise involves two samplers for one-sided pinned
random walks. An interesting statistic is the mean “excursion”

V (x) =
1

n

n∑
j=1

xj .

A phenomenon called entropic repulsion makes this quantity larger than
one might at first guess. Use two MCMC methods. One is a global Gaus-
sian proposal Metropolis strategy. The other is a sweep from j = 1 to
j = n, where at each step you resample the single variable Xj with the
correct conditional distribution. Do the resampling using rejection sam-
pling (Exercise 4) from the appropriate Gaussian proposal distribution.
Make a histogram of the values of V (X) for each MCMC method to see
that they agree to sampling error. You can do this with a small value of n
(but not too small) because it’s a test for correctness of the two samplers.
Once you believe the samplers are correct (or at least consistent with each
other), do some experiments with larger n. Compute and plot the esti-
mated auto-covariance function for the two methods and for various values
of n Experiment with the proposal size for the global Metropolis algorithm
to see what size works well and how that size depends on n. Comment on
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the decay of the auto-covariance functions for various n values. Comment
on which method seems better. Make sure you do long enough MCMC
runs for the estimated auto-covariance functions to be somewhat accurate.
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