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1 Importance sampling
sec:is

Importance sampling is a Monte Carlo technique with many uses. One use is
variance reduction. You find a different and probably more complicated way
to estimate the same number. The complicated way is more work per sample,
but needs fewer samples to achieve a given accuracy because its variance is
lower. Another use is simplifying the problem of sampling. You find another
probability density that is easier to sample than the one you started with, but
close enough so that the change of distribution doesn’t increase the variance
too much. Designing importance sampling strategies for either purpose usually
starts by understanding the original problem a little better.

This class introduces importance sampling and gives examples of these two
ways it is applied. The material makes use of Gaussian approximation of prob-
ability densities and “quadratic exponential” approximations to functions being
integrated. Expressions like e−a(x−x∗)
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are called Gaussian for probability den-
sities of a random X. Otherwise, they are quadratic exponentials. If you want
a Gaussian or quadratic exponential approximation, you first have to find x∗,
which is the maximizer of the function or PDF. In probability, x∗ is the mode of
the PDF. It represents the “most likely way”, or the mechanism by which some-
thing happens. The constant a in a PDF (or a generalization of it) determines
the fluctuations around the “most likely way”.

Importance sampling involves at least two probability distributions. Suppose
ρ(x) is a PDF for a d component random variable X ∈ Rd. Using the notation
from last week, suppose we seek to estimate

A = E[V (X)] . (1) Ad

It will help to put the probability distribution as a subscript, as

A = Eρ[V (X)] =

∫
V (x)ρ(x) dx . (2) Epdf

Let σ(x) be another PDF, and define the likelihood ratio to be

L(x) =
ρ(x)

σ(x)
. (3) L

Then

A =

∫
V (x)ρ(x) dx =

∫
V (x)

ρ(x)

σ(x)
σ(x) dx .
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Therefore
A = Eσ[V (X)L(X) ] . (4) is

There are two ways to estimate A. One way is to generate N independent
samples Xk ∼ ρ and use the direct estimate

Âρ,N =
1

N
V (Xk) . (5) de

The other way is to generate N independent samples Xk ∼ σ and use the
importance sampling estimate

Âσ,N =
1

N
V (Xk)L(Xk) . (6) ise

Importance sampling means using σ instead of ρ, and compensating by averaging
V with the likelihood ratio.

Variance reduction is one application of importance sampling. In variance
reduction, one seeks σ so that the variance of the importance sampled estimator
(
ise
6) is less than the variance of the direct estimator (

de
5).

varσ[X(X)L(X) ] < varρ[V (X) ] .

Figure
fig:md
1 is an example where the importance sampled error bar is smaller than

the direct estimate almost by a factor of 8. This reduces the number of samples
needed to reach a given accuracy by a factor of almost 82 = 64.

Importance sampling may be used if σ is easier to sample than ρ. is to
simplify the sampling process. It may be that ρ(x) is complicated and hard to
sample. Maybe we can find a simpler density σ(x) that is easier to sample. The
“fancy” sampler might be higher variance than the direct sampler, but the ease
of sampling might make this a good tradeoff. This is particularly common when
ρ is complicated but approximately Gaussian. We can take σ to be a Gaussian
approximation to ρ.

The term importance sampling comes from the idea that the most common
values of X under ρ might not be the most “important” ones. The alternative
density σ may make these “important” values of X more likely. In fancy ap-
plications, importance sampling may be called change of measure. In finance,
people talk about two “worlds”. There is the “real world” where X ∼ ρ and
A = E[V (x)]. There is an alternative world (with alternative facts?) where
X ∼ σ and A = E[V L].

As an example, consider the problem calculating moments of a standard
normal

µ2n = EN (0,1)

[
Z2n

]
.

This is a big number for large n, so large values of Z must be important. For this
reason, we try an alternative density σ = N (0, σ2) (be careful of this conflict of
notation). The probability densities involved are

ρ(z) =
1√
2π
e−

z2

2 , σ(z) =
1√

2πσ2
e−

z2

2σ2 .
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The likelihood ratio is

L(z) =

1√
2π
e−

z2

2

1√
2πσ2

e−
z2

2σ2

= σe−
z2

2 (1− 1
σ2

) . (7) Glr

Therefore

µ2n = σE0,σ2

[
Z2ne−

Z2

2 (1− 1
σ2

)
]
. (8) isGm

The direct way to evaluate µ2n is to generate N independent samples Zk ∼
N (0, 1) and average the numbers Z2n

k . An important sampling strategy would
be to generate N independent samples Zk ∼ N (0, σ2), average the numbers

Z2n
k e−

Z2
k
2 (1− 1

σ2
), then multiply by σ.

Here is what is going on in this importance sampling strategy. We want Z
values that are larger than typical standard normal values, so we sample from a
density with a larger variance. This gives samples Zk that are larger than they
should be. If we just average Z2n

k , the average would be too large. Instead we
re-weight the samples with the likelihood ratio (

Glr
7). For σ > 1 (which we plan

to use), the coefficient of Z2 is negative, so the weights

Wk = σe−
Z2
k
2 (1− 1

σ2
)

are likely to be small. This makes the importance sampled estimator (
isGm
8) have

the same expected value as the direct sampler. We find the precise formula for
the weights Wk by doing some algebra with probability densities.

The posted code ImportanceSamplingDemo.py implements this importance
sampling algorithm. You will see that I made it starting from a code from
Week 1. This is for estimating E

[
Z8
]
, but you should experiment with higher

moments and different σ stretch factors. Experiment with higher σ values for
higher moments. Note the last column for relative error. If you look at the row
for σ = 2, you will see the error is −1.1, which may not seem small. But the
actual answer is A = 105 + 3 · 5 · 7, so the relative error is −.013. Most of the
errors are within the error bars, but not all. The error bar for σ = 1 (which is
the direct estimate) is about ten. All the larger σ have smaller error bars. The
optimum seems to be σ = 3, but nearby σ give almost as good performance.
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Figure 1: Output from ImportanceSamplingDemo.py using importance sam-
pling to estimate Gaussian moments. fig:md

2 Bayesian Reasoning
sec:B

Here is a brief explanation of the Bayesian point of view in statistics. The course
will come back to this in future weeks. Today, it is motivation for the Bayesian
Information Criterion (BIC) integrals of subsection

sec:BIC
3.2.

Bayesian statistics is an approach to parameter estimation from data. Sup-
pose the parameters to be estimates are (X1, . . . , Xd). Suppose the data are
(Y1, . . . , YN ). Bayesian approach is based on a model of how the data are made.
First, the parameters are chosen from a probability distribution called the prior.
Before the data are made, we have X ∼ π(x). Then the data are made from a
probability distribution that depends on the parameters,

Y ∼ ρ(y|X) .

The joint distribution of parameters and data is

(X,Y ) ∼ π(x)ρ(y|x) .

The posterior density is the conditional density of the parameters, conditional
on the data, which is

X ∼ ρ(x|Y ) =
π(x)ρ(Y |x)

Z(Y )
. (9) p

This formula is Bayes’ rule for conditional probability (look it up if necessary).
The posterior is the conditional density of the parameters, conditioned on the
data you have. The Bayesian philosophy is that this posterior represents your
knowledge of the parameters given the data. The word prior means “before”
and posterior means “after”. This is before and after seeing the data.

The notation above follows the practice in Bayesian statistics. The prior is
often called π. All other probability densities are denoted with the same letter,
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ρ in this case. The conditional distribution of the data given the parameters is
ρ(y|x). The posterior of the parameters given the data is ρ(x|y). For computer
scientists and people who program in C++, this would be called polymorphism,
in which the same function name can refer to different functions depending
on the types of the function arguments. Python does not have this kind of
polymorphism, but Bayesian statistics does.

The denominator Z(Y ) in the posterior density (
p
9) may be found using the

fact that the posterior is a probability density as a function of x. That is∫
ρ(x|Y ) dx = 1 , for all Y .

In view of (
p
9), this gives

Z(Y ) =

∫
π(x)ρ(Y |x) dx . (10) ei

In the context of Bayesian statistics, this integral may be called the evidence
integral. In Week 1, a similar integral formula for the normalization constant
was called the partition function. The integral is complicated in part because
probability densities like ρ(y|x) depend on parameters x is complicated ways.
As an example of this, look how the normal PDF depends on the standard
deviation. Numerical estimation of the evidence integral turns out (see later
weeks for details) to be one of the hardest technical challenges of practical
Bayesian statistics.

Here’s an example of a situation where the Bayes approach seems appropri-
ate. Suppose there is a “population” whose blood pressure is Gaussian with
mean µ and variance σ2

P . [Obviously oversimplified model: “blood pressure” is
more complicated than just one number, and whichever number you choose, it
would not be Gaussian in any earthly population.] Suppose you select one per-
son from that population “at random” and measure her blood pressure, giving
Y . Blood pressure measure measurements are unbiased and have error that is
Gaussian with standard deviation σM .

The statistics question is: given the measurement Y , what is your “posterior”
state of knowledge about the actual blood pressure X. Suppose, for example,
that Y is much less than µ. That means the measurement suggests that the
person has a very low blood pressure, much lower than the mean. Since it’s
unlikely for a person to have such a low blood pressure, you may suspect instead
that there was a large measurement error. Your prior belief (the prior) influences
your posterior belief, but the measurement influences it also. The Bayes point
of view is a systematic way to take both priors and new data into account.

Here’s how it works out in this simple Gaussian example. The probability
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densities are

π = N (µ, σ2
P )

π(x) =
1√

2πσ2
P

e
− (x−µ)2

2σ2
P

ρ(·|x) = N (x, σ2
M )

ρ(y|x) =
1√

2πσ2
M

e
− (y−x)2

2σ2
M

ρ(x, y) = π(x)ρ(y|x)

ρ(x, y) =
1

2πσPσM
e
−
(

(x−µP )2

2σ2
P

+
(y−x)2

2σ2
M

)

ρ(x|y) =
1

Z(y)
ρ(x, y)

ρ(x|y) =
1

Z(y)

1

2πσPσM
e
−
(

(x−µP )2

2σ2
P

+
(y−x)2

2σ2
M

)
. (11) gp

We learn from this that the posterior density is a “quadratic exponential” (an
exponential of a quadratic function of x). A quadratic exponential that is a
probability density (the posterior is a density) may be expressed in terms of its
mean and variance. I write µa(y) for the mean of the posterior density, which is
called the posterior mean. The subscript a is for “after” – you can’t use µP for
both the prior and the posterior means. The posterior distribution depends on
the data, so the posterior mean can depend on y. The posterior variance will
be denoted σ2

a. This turns out not to depend on the data – which is an unusual
feature of the all-Gaussian model.

A feature of Gaussian distributions is that the mean is the point with the
highest probability density. Therefore, we can find µa(y) by maximizing ρ(x|y)
over x. We see that x appears only in the exponent, so we maximize ρ(x|y) by
minimizing the exponent, which is a quadratic function of x. In the last line,
the minimizer is called µa(y):

min
x

[
(x− µP )2

2σ2
P

+
(y − x)2

2σ2
M

]
=⇒ ∂x

[
(x− µP )2

2σ2
P

+
(y − x)2

2σ2
M

]
= 0

x− µP
σ2
P

+
x− y
σ2
M

= 0

x

σ2
P

+
x

σ2
M

=
µP
σ2
P

+
y

σ2
M

µa(y) =

[
1

σ2
P

+
1

σ2
M

]−1(
µP
σ2
P

+
y

σ2
M

)
.

This may be understood as saying the posterior mean is a weighted average of
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the prior mean and the measurement. The weights are

wP =

[
1

σ2
P

+
1

σ2
M

]−1
1

σ2
P

, wM =

[
1

σ2
P

+
1

σ2
M

]−1
1

σ2
M

. (12) pw

These are positive numbers that have wP + wM = 1. The posterior mean is

µa(y) = wpµp + wMy . (13) pm

How much weight is given to the prior and the data depends on their precisions.
The precision is the reciprocal of the variance. According to the weight formulas,
more precision implies more weight. If the measurement has high precision (low
variance) relative to the precision of the prior, then the measurement gets more
weight.

We find the variance by finding the coefficient of x2 in the exponential. From
(
gp
11), the exponent is

1

2

(
1

σ2
P

+
1

σ2
M

)
x2 + less than quadratic in x .

This says that the posterior precision is the sum of the prior and measurement
precisions:

1

σ2
a

=
1

σ2
P

+
1

σ2
M

.

We may understand this as saying that the prior and the data are both infor-
mation we use to form our posterior belief. The posterior variance is the inverse
of the posterior precision:

σ2
a =

(
1

σ2
P

+
1

σ2
M

)−1
. (14) pv

Altogether, the posterior is Gaussian with mean µa and variance σ2
a. Thus, the

posterior density (
gp
11) may be written as

ρ(x|y) =
1√

2πσ2
a

e
− (x−µa)2

2σ2z .

Gaussian examples illustrate the definitions, but they are not typical of
general problems in Bayesian statistics. Even when it is possible to write a closed
form expression for the posterior density (

p
9), it is a computational challenge to

learn what this formula says about the posterior distribution of X. The term
Markov chain Monte Carlo (MCMC) was invented by statisticians who realized
that these sampling methods made it possible to understand the posterior. This
course will spend many weeks on MCMC.

The Bayesian view of statistics may be contrasted with the frequentist view.
The Bayes approach needs a prior distribution on the unknown parameters.
Sometimes there is a prior that is informed by lots of prior information. The
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distribution of blood pressure in a population would be an example of a well
justified prior. More commonly, the prior reflects some general qualitative beliefs
about the parameters. For example, we may assume the components of X are
uniformly distributed in some intervals that make sense on general grounds.
In this case, we hope that the prior is uninformative, which means that the
posterior does not depend strongly on arbitrary specifics of the prior. The
extreme uninformative prior is the flat prior. In the flat prior, π(x) is assumed
to be constant. The constant value is irrelevant. In this case, the posterior
would be given by (

p
9), but with π(x) removed. Needless to say, a flat prior

is not a true probability density. The posterior may or may not make sense
with a flat prior. There is a phrase associated with other physical modeling:
“replacing ignorance with fiction”. I think this applies also to deciding what
prior to use. The Wikipedia page on Bayesian statistics, and many books on
the subject, talk about conjugate priors. These have no justification other than
mathematical convenience. If a conjugate prior gives an answer different from a
flat prior, then this difference is a step away from the right answer. My advice:
never use a conjugate prior. One of the strongest arguments for the frequentist
point of view is that it does not require a prior.

The first step in a frequentist statistical analysis is to present a point esti-
mate, X̂, which is a “best guess” at the true parameter combination x. The
point estimate is a function, so we can write X̂(Y ). An advantage of point esti-
mates is that you can estimate properties of a distribution without estimating
other properties. We used this in Week 1, when we estimated the mean and
variance of a random variable that was called V (X). It is possible to estimate
the mean and variance without estimating the distribution of V . A disadvan-
tage of a point estimate is that it’s just a number or collection of d numbers
that are the best guess at the d components of X.

2.1 Model selection
sec:ms

Model selection is a part of statistics where you decide which of several candidate
models is most appropriate for the data you have. Typically, the candidate
models range from simple to more complex, with the more complex models
being more complex extensions of simple models.

For example, suppose your data are (tj , Yj), for j = 1, . . . , n. These may
represent observations Yj taken at fixed times tj . The Yj are the true values
modified by observation noise, which we take to be independent Gaussian as
above. A model might take the form

Yj = f(tj , X0, . . . , Xd−1) + Zj .

The “functional form” f(t,X) contains d fitting parameters X0, . . . , Xd−1. The
“observation errors” Zj are assumed to be independent Gaussians with mean
zero and variance σ2. The residuals for a given parameter combination X are the
differences between the model “prediction” and the observational data, which
is

Zj = Yj − f(tj , X) .
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Calibrating a model means choosing fitting parameters. We write the best
fit as X̂. The ides, then, is that

Ŷj − f(tj , X̂)

is our best estimate of the true yj that we are unable to observe exactly. A fre-

quentist might give the point estimate X̂ as the best guess of the true parameter
combination. A “true” Bayesian would not give a point estimate at all.

The least squares fitting criterion is to find the parameter combination that
minimizes the sum of the squares of the residuals

Rd = min
X

∑
j

(Yj = f(tj , X)
2
.

Let us denote the optimal parameter combination by X̂. The model prediction
would be

Ŷ (t) = f(t, X̂) .

One goal of statistical modeling is to make accurate predictions. We don’t only
want the best parameters, we want the best model. That’s model selection.

We could choose the model to minimize the fitting residual Rd. But that
leads to overfitting. More parameters lead to smaller Rd (better data fitting),
but are worse at prediction. For polynomial models, it is a simple mathematical
fact that Rd < Rd−1, except if X̂d−1 = 0 in the d parameter model, which is
very unlikely even if the true parameter is equal to zero. The extreme case is
d = n, where the least squares polynomial interpolates the data exactly. This
means that the parameters “fit the noise” (measurement errors) as well as the
“signal”. The result is predictions based on noise. We need a criterion that
decides how much fitting error should we allow in the interest of simple models
with fewer parameters.

Elementary classical statistics has an answer that applies to polynomials.
You do a hypothesis test to see whether the hypothesis that the new parameter
is zero is rejected by the data. This is not backed by theory that I’m aware of,
and it does not even apply in most problems where the parameter appears in a
non-linear way. Bayesian model selection is an alternative.

The Bayesian model is that model d is chosen with probability πd. Then the
parameters X are chosen with a prior πd(x). The the data are chosen with a
data model Y ∼ ρd(y|X). The posterior of parameters and data is

ρ(x, d|Y ) =
ρd(Y |x)πd(x)πd

Z(Y )

The posterior probability of model d is

rhod(Y ) =

∫
ρ(x, d|Y ) dx =

1

Z(Y )

[∫
x

ρd(Y |x)πd(x) dx

]
πd .

The quantity in square brackets is the evidence integral

Ed =

∫
x

ρd(Y |x)πd(x) dx .
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3 Rare events and large deviations

A rare event is an event that is unlikely to happen. Suppose X is a random
object and S is some set of outcomes. A direct estimate of A = Pr(S) =
Pr(X ∈ S) is to make N independent samples of X and count the “hits”, which
are samples Xk with Xk ∈ S:

H = # {Xk ∈ S} .

The estimate is the fraction of samples that are hits:

Â =
H

N
. (15) dpe

It is expensive to estimate the probability of rare events by direct simulation
because most of the samples are “wasted” because they are not hits. The
accuracy of a Monte Carlo estimate typically scales like the square root of the
number of samples. For the direct rare event estimator, it depends on the
expected number of hits, which is far smaller than the number of samples, see
exercise

ex:dsh
3. More simply, if you generate N = 1000 samples and get no hits, then

you can’t tell whether A = 10−3 or A = 10−5 or smaller. You do not know,
even approximately, the order of magnitude of the rare event probability.

Large deviation theory may be used to find importance sampling strategies
for rare events that reduce the variance (

rad
20) of direct sampling. A large de-

viation happens when a random variable is much larger or much smaller than
usual. Large deviations are rare events. Large deviation theory is a collection
of methods for making rough theoretical estimates of the probabilities of large
deviations.

3.1 The Laplace method
sec:Lm

The Laplace method is an approximation technique for certain integrals. It is the
basis for many Gaussian approximations, as we will see. Some rare event/large
deviation problems can be understood using it. It illustrates the philosophy that
you start by looking for the most likely way an extreme event happens. I explain
it using a simple example, which is a derivation of Stirling’s approximation. The
general principles should be clear from the example.

The derivation starts with the integral formula

n! =

∫ ∞
0

xne−x dx .

Stirling’s approximation is an approximate formula that is valid when n is large.
When n is large, and x is not large, the integrand increases rapidly with x. On
the other hand, the “exponentials beat powers” principle implies that eventually
e−x “wins” and the integrand starts decreasing. Most of “the mass” of the
integral is in the intermediate range neither term dominates. First, we identify
the x values where the integrand is large, starting by finding x∗, where the
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integrand is maximized. Then we approximate the integrand in a neighborhood
around x∗. Inside this neighborhood, the integrand is well approximated by a
“quadratic exponential” function (see below). This integral can be calculated
explicitly and gives the Stirling approximation. The rest of the integral is much
smaller by comparison.

You find the max of the integrand by setting the derivative to zero and
solving

d

dx
xne−x = nxn−1e−x − xne−x

0 = (x− n)xn−1e−x

x∗ = n .

Now we use a Taylor series to approximate the integrand for x near x∗. The
key to the Laplace method is to approximate the exponent, not the integrand.
For this, we write

xne−x = e−φ(x) , φ(x) = x− n log(x) . (16) phi

The − sign in e−φ follows tradition and makes it possible to talk about this
using the intuitive language of statistical physics. For that reason, we call φ(x)
the potential. The Gibbs distribution (of the Gibbs Boltzmann distribution)
corresponding to potential φ (and kBT = 1) is ρ(x) = 1

Z e
−φ(x). The probability

density goes down as the potential goes up. The normalization constant Z
is called the partition function and is determined by the normalization of the
probability density ∫

ρ(x) dx = 1 =⇒ Z =

∫
e−φ(x) dx .

The ground state or the minimum energy state is x∗ with φ(x∗) = min. You
find the state with highest probability density by minimizing the potential.

We have already calculated in our example that the minimizer of our poten-
tial is x∗ = n:

min
x
φ(x) = φmin = φ(x∗) = n− n log(n) .

For a Taylor series of φ for x ≈ x∗ = n, we calculate the derivatives of (
phi
16) (φ′′′
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is used later):

φ(x∗) = n− n log(n)

φ′(x) = 1− n

x
φ′(x∗) = 0 (because x∗ s a minimizer)

φ′′(x) =
n

x2

φ′′(x∗) =
1

n

φ′′′(x) = −2n

x3

φ′′′(x∗) = − 2

n2
.

The quadratic Taylor approximation for x near x∗ is

φ(x) ≈ φ(x∗) +
1

2
φ′′(x∗)(x− x∗)2 = n− n log(n) +

(x− n)2

2n
. (17) pa

The corresponding integral is

n! =

∫
e−φ(x) dx

≈
∫
e
−
[
n−n log(n)+

(x−n)2

2n

]
dx

= en log(n)e−n
∫
e−

(x−n)2

2n dx

≈ nne−n
∫ ∞
−∞

e−
(x−n)2

2n dx

n! ≈
√

2πnnne−n . (18) sa

In the next to last step we changed the range of integration from [0,∞) to
(−∞,∞). This is a good approximation because if n is large, then the integral
over (−∞, 0] is much smaller than the integral over [0,∞). If you think of the
integrand as a Gaussian probability density, then the mean is n and the variance
is n, so the standard deviation is

√
n. This makes any point with x ≤ 0 at least√

n standard deviations away from the mean. For example, with n = 10, that’s
at least

√
10 = 3.15 standard deviations, which is a lot for a Gaussian.

The formula (
sa
18) is Stirling’s approximation. [If this were not a math class,

I might have said Stirling’s formula and written n! =
√

2πnnne−n.] We have
already seen that even the simpler “formula” n! = nne−n explains much of
the behavior of the factorial function. We found this just by minimizing the
potential

n! =

∫
e−φ(x) dx ∼ nne−n = e−φ(x∗) . (19) ca
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The “only thing” missing from this is the prefactor, which is
√

2πn. The pref-
actor is less important because it is algebraic, which is small compared to the
exponential factors nn or en. We also saw that it takes more work to figure the
prefactor than the exponential part. For the exponential part, you just mini-
mize the potential function. For the prefactor you need the second derivatives,
the Gaussian approximation, and the change in the region of integration.

When the Laplace method works, it works because the range of integration
consists of two overlapping regions. One region is points near x∗ where the
potential is small. The potential is large enough in the other region, and e−φ(x)

is so small, that the integral over the far region is tiny compared to the integral
over the near region. The key is that the quadratic Taylor approximation is
valid in the near region. This is the dichotomy behind the Laplace method:
either φ(x) ≈ φ(x∗) + 1

2φ
′′(x∗)(x− x∗)2, or e−φ(x) is too small to matter.

You can see, informally, that the Laplace dichotomy is valid in our derivation
of Stirling’s approximation. The error in the two term Taylor approximation
of φ(x) about x∗ depends on the third derivative. The theme of Taylor series
remainder inequalities from calculus is that the error is on the order of the first
neglected term. In this case, the first neglected term is the third derivative
term. One form of the remainder estimate is

φ(x) =

[
φ(x∗) +

1

2
φ′′(x∗)(x− x∗)2

]
+

1

6
φ′′′(ξ)(x− x∗)3 , |ξ − x∗| ≤ |x− x∗| .

Informally, replace the unknown ξ with the nearby x∗, and you get

φ(x)−
[
φ(x∗) +

1

2n
(x− x∗)2

]
∼ 1

3n2
|x− x∗|3 .

We can calculate |x− x∗| that makes the error term equal to ε:

1

3n2
|x− x∗|3 = ε

|x− x∗| = 3
1
3n

2
3 ε

1
3 .

Then we can estimate how much φ has changed when x− x∗ is this big:

φ(x)− φ(x∗) ≈
1

2n
(x− x∗)2 =

3
2
3

2
ε

2
3n

1
3 .

The Laplace dichotomy is true in this case because n
1
3 is a positive power of n.

If |x− x∗| < 3
1
3n

2
3 ε

1
3 , then the quadratic Taylor approximation of φ is accurate

(within ε). If |x− x∗| > 3
1
3n

2
3 ε

1
3 , then φ(x) > φ(x∗) + 3

2
3

2 ε
2
3n

1
3 , and (with

a = 3
2
3

2 = 1.04 · · · )

e−φ(x) < e−φ(x∗) e−aε
2
3 n

1
3 .

This shows that e−φ(x) is less than e−φ(x∗) by a factor of e−aε
2
3 n

1
3 . For any

ε > 0, this goes to zero as n→∞. The integral from outside the near region is
smaller by a factor goes to zero as n goes to infinity.
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This simple check is not the whole story, but it is the essential part. If you’re
so inclined and have the training in ε− δ analysis, you can make a proof based
on these calculations and other (simpler) inequalities based on φ being convex.
The theorem of Stirling’s approximation is that it’s relative error goes to zero
as n goes to infinity.

√
2πnnne−n − n!

n!
→ 0 as n→∞ .

3.2 Bayesian Information Criterion
sec:BIC

The Bayesian information criterion, or BIC is a way to decide which model is
better for the data.

4 Assignment 2, due February 16
sec:assignment

Always check the class message board on the NYU Classes site from home.nyu.edu before doing

any work on the assignment.

Corrections: none yet.

Gm 1. Let Z be a standard normal, which has PDF

1√
2π
e−

z2

2 .

Denote the moments by
µk = E[Zk] .

Use integration by parts (Hint: d
dz e
− z22 = −ze− z

2

2 ) to show that∫ ∞
−∞

z2ne−
z2

2 dz = (2n− 1)

∫ ∞
−∞

z2n−2e−
z2

2 dz .

Conclude that
µ2n = (2n− 1)(2n− 3) · · · 3 .

This is written (2n − 1)!!. Do not confuse this with ((2n − 1)!)!. For
example, 5!! = 5 · 3 = 15, while (5!)! = 120! = big .

ex:gsh 2. Here’s a heuristic that estimates a good stretch factor σ in the Gaussian
moment importance sampling example. We set σ to be the size of a typical
Z that contributes to µ2n. A typical value of Z2n is about µ2n = (2n−1)!!.

Therefore, a typical value of |Z|may be about [(2n− 1)!!]
1
2n . Use Stirling’s

formula and

(2n− 1)!! =
(2n)!

2nn!

to show that this typical |Z| might be around
√

2n. Use this to explain
the observation that σ ≈ 3 is a good value in the experiment of Figure

fig:md
1.
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ex:dsh 3. Show that when Pr(X ∈ S) is small, then the direct estimator (
dpe
15) has

relative accuracy given by the expected number of hits:

σÂ
A
≈ 1√

E[H]
. (20) rad

ex:hb 4. As we say a lot, low dimensional intuition can lead to exponentially bad
algorithms in high dimension. Suppose you want X ∈ Rd uniformly dis-
tributed in the unit ball |x| ≤ 1. One way is to “propose” X uniformly
distributed in the “bounding box” and then accept the first proposal that
is inside the ball. The bounding box is defined by −x ≤ xj ≤ 1 for
j = 1, . . . , d. You can make such X by taking components Xj = −1+2Uj ,
where the Uj are independent and uniformly distributed in [0, 1] as given
by a random number generator. The rejection algorithm is to generate
such X until the first time |X| ≤ 1. The number of trials needed for this
grows exponentially with d. For this exercise, we assume instead that the
proposals are independent uniformly distributed Gaussians. More pre-
cisely, Xj ∼ N (0, 1), i.i.d. Here are some steps to estimate Pr |X| ≤ 1).
These include a new approximate integration method, which sometimes
is called Watson’s lemma. We rely on the following “polar coordinates”
integration of radially symmetric functions in d dimensions. If f(r) is a
suitable function of r ≥ 0, then∫

Rd
f(|x|) dx1 · · · dxd = ωd−1

∫ ∞
0

rd−1f(r) dr .

Here, ωd−1 is the “surface area” of the unit sphere |x| = 1 in d dimensions.

(a) Find a formula for ωd−1 using the fact that∫
· · ·
∫ [

1√
2π
e−

x21
2

]
· · ·
[

1√
2π
e−

x2d
2

]
dx1 · · · dxd = 1 .

The formula has the form

ωd = Cd

∫ ∞
0

rde−
r2

2 dr

and you have a formula for Cd. (d − 1 changed to d to make the
formulas simpler.)

(b) Use the Laplace method to find an approximate formula for the in-
tegral that holds when d is large.

(c) Show that the probability |X| ≤ 1 is

Pd =
ωd−1

(2π)
d
2

∫ 1

0

e−φ(r) dr ,

15



where

φ(r) =
r2

2
− (d− 1) log(r) .

Find where in the interval [0, 1] the potential φ has a minimum and
make a linear approximation (using φ and φ′) of φ about that point.
Integrate with the linear approximation t estimate Pd.

(d) Justify the approximation by showing that φ is large where the ap-
proximation is poor. Part (c) is the Watson’s lemma method that is
appropriate many problems where the minimum of the potential is
at the boundary of the region of integration.
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