
http://www.math.nyu.edu/faculty/goodman/teaching/MonteCarlo20/

Class notes: Monte Carlo methods
Week 2 supplement on Python classes

Jonathan Goodman
September 16, 2020

If you do Monte Carlo in Python, or anything else real in Python, you are
likely to us libraries or software created by Python experts. This software is
likely to use Python classes. Therefore, most people who do Monte Carlo need to
know how classes work in Python. The Python documentation is (in September
of 2020)

https://docs.python.org/3/tutorial/classes.html

This is good and clear. I will say a few of the things there, which will be enough
for this week. I will not talk about inheritance, which you will remember from
C++ or Java if you did classes in those languages. I will not talk about Python
specific class features. Just the basics.

This supplement describes the class datum, which is defined and illustrated
in the modules DatumClassDef.py and DatumCaller.py that are posted for
Week 2. The main program is in the module DatumCaller.py. This module
imports DatumClassDef.py and creates a namespace dat for it. The import

command executes the module DatumClassDef.py, which creates a class datum.
After the import command, the namespace dat will contain the name datum,
which is the definition of the datum class.

A class is a software defined data type. If datum is a class, then you can
create and use objects whose type is datum. An object whose type is datum is
an instance of the class datum. Once you have defined the datum class, you can
instantiate new instances of that class. The code in the class definition specifies
what information a class object (instance) has and what a class object can
do. The command x = dat.datum(3,"x value") creates a name x and binds
this name to an object of class datum that is in the namespace dat. Please
follow along in a line by line description of the code and the output. The class
definition is figure

fig:def
1. The code that illustrates how this works is in figure

fig:call
2.

The output is in figure
fig:output
3.

Line 16 of figure
fig:def
1 begins the definition of a class called datum. The nest

four lines are the docstring. All Python definitions (for this Monte Carlo class)
must have docstrings. You can look up in Python style guides what a docstring
is supposed to be like. The ones in this example are probably not “up to code”,
but at least there’s something.

Line 22 defines a function called init . This function is the constructor
for the class. It says how a new object from this class is to be created. The
underscore characters before and after the name init is to prevent a program-
mer from accessing init from outside the class definition. The Python classes
documentation linked above explains this in more detail. Python allows pro-
grammers to do things they should not do. Programmers have conventions to

1

https://docs.python.org/3/tutorial/classes.html

keep themselves from doing things they should not do, such as putting under-
score characters in names you’re not supposed to use.

The first argument of init is a namespace called self. Each class in-
stance has its own self namespace. This is where class instances put data that
are unique to that class instance. The second argument is val = 0. This de-
fines a variable val and gives it the default value 0. If you call the constructor
without giving a value, the constructor uses the default value instead. Line 16
of DatumCaller.py in figure

fig:call
2 creates a name x and binds it to an object of

class datum. It creates this object by calling init with arguments 3 and "x

value". The Python interpreter creates the self object and stores it with the
class instance object. Lines 26 and 27 of the constructor (figure

fig:def
1) has the class

instance “remember” the given values.
Classes not only remember stuff, they do stuff. Line 29 of the class definition

(figure
fig:def
1) defines a function get value. In the function definition it has the self

argument. But it is called from line 18 in figure
fig:call
2 with no arguments. The

Python interpreter inserts the self object associated to that object. Line 19 of
figure

fig:call
2 illustrates that a function in a class can modify the data in the class.

This one changes self.val, as instructed by line 39 of figure
fig:def
1. Line 21 of figure

fig:call
2 verifies that this happened. Line 22 of figure

fig:call
2 illustrates that the a function

that modifies class instance data can have arguments. There is one argument
in line 22 but two arguments in line 41 of figure

fig:def
1.

Lines 29 - 31 of figure
fig:call
2 illustrate the feature that assignment in Python does

not create objects, it only binds names to existing objects. Saying y=x doesn’t
create an object and copy the information from x. It just creates a name y

and has y point to the same object the name x points to. Lines 26 and 27
illustrate that y has the same data as x, which you expect. Line 34 illustrates
that changing the y value has the side effect of changing the x value. Line 33
accessed the object that name y points to. Line 34 calls x.get val(). What
really happens is that the names y and x are just different ways to get to the
same object.

We in Monte Carlo create classes to store data and evaluate probability
densities or do other big jobs. Line 41 of figure

fig:def
1 creates a function that combines

“user input” (the argument x) with information in the class itself to produce a
value, which is the “capped” value min(x, val).

Exercise

(not to hand in) Add a data member self.sig that stores a non-negative
floating point number σ that represents the uncertainty in val. Create a test
function to see whether a given number is within the error bar of the data value.
More specifically:

• Add an argument to the constructor init that copies the given argu-
ment to the self namespace. Give this default value σdefault = 0, though
any scientist would tell you that’s wrong because no data number has zero
uncertainty.

2

• Add a getter function that returns σ stored in self (stored in the ob-
ject bound to a name in self). The existing functions get val() and
get name() are getter functions. Make one for sig.

• Add code to DatumCaller.py to test that these work.

• Create a class function we(y, z) (for “within error”) to test whether y is
within z standard deviations (σ’s) of the data value. x.we(y,z) should
return TRUE if |y − valuex| ≤ zσx, and FALSE otherwise. Give z the default
value zdefault = 1, for a Monte Carlo one standard deviation error bar.

• Add code to DatumCaller.py that checks both the TRUE and the FALSE

outcomes.

3

Figure 1: Code from DatumClassDef.py, showing line numbers. fig:def

4

Figure 2: Code from DatumCaller.py, showing line numbers. fig:call

5

Figure 3: Output from running DatumCaller.py. fig:output

6

