
http://www.math.nyu.edu/faculty/goodman/teaching/MonteCarlo20/

Class notes: Monte Carlo methods
Week 13, theory

tentative Jonathan Goodman
Tentative December 9, 2020

1 Convergence rates

Suppose Xn are the steps of a Markov chain and Xn ∼ ρn are the corresponding
PDFs. Under some non-degeneracy conditions, we know that ρn → ρ as n →
∞, with ρ being the target invariant distribution. We have seen that ρn can
converge to ρ slowly. There are theoretical approaches that lead to proofs that
certain MCMC algorithms converge at certain rates.

To prove that ρn is close to ρ, you need a notion of distance between prob-
ability distributions. There are many different ways to measure distance. They
give similar answers for simple distributions in low dimension, but remarkably
different answers for complex distributions in high dimensions.

Total variation

Total variation is one measure of the difference between probability distribu-
tions. Suppose ρ(x) and σ(x) are two probability densities in Rd. The total
variation distance between them is

‖ρ− σ‖TV =

∫
Rd

|ρ(x)− σ(x)| dx . (1)

This is the same as the L1 norm, as long as you’re talking about probability
densities. There is a more abstract definition of total variation distance that is
useful in more abstract situations. We define the ρ (or σ) probabilitiy of a set
A by

ρ(A) = Prρ(X ∈ A) =

∫
A

ρ(x) dx .

This definition make contact between probability densities and probability mea-
sures. A probability measure is any way of defining probabilities ρ(A), which
may not involve integrating a probability density. The probability measure
definition of total variation difference between probability measures is

‖ρ− σ‖TVm = 2 sup
A

[ρ(A)− σ(A)] . (2)

If ρ(A) = σ(A) for all A, then this gives zero, as it should. Otherwise, there
is some with ρ(A) 6= σ(A). If ρ(A) > σ(A), this shows ‖ρ− σ‖TVm > 0.
If ρ(A) < σ(A), then ρ(Ac) > σ(Ac) so again ‖ρ− σ‖TVm > 0. [In this,
“sup” is for supremum. If you haven’t taken a technical analysis class, this is
slightly different from “max” for maximum in that the supremum need not be
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“achieved”. For example, the sequence an = 1 − 1
n has supremum equal to 1

but it has no maximum because an < 1 for all n. If you have taken a technical
analysis class, you could prove in this case (using “countable additivity”) that
there is a set A that achieves the supremum, so it could have said “max”.] If
the measures ρ and σ are given by probability densities, the definitions are the
same. We prove this using the “two inequalities” method. You can show that
Q1 = Q2 by showing that Q1 ≤ Q2 and Q1 ≥ Q2.

First, we prove that ‖ρ− σ‖TVm ≥ ‖ρ− σ‖TV > 0. For this, take A =
{x | ρ(x) > σ(x)}. Then, using the fact that Pr(Ac) = 1 − Pr(A), so ρ(A) =
1− ρ(Ac), etc.,

‖ρ− σ‖TV =

∫
Rd

|ρ(x)− σ(x)| dx

=

∫
A

[ρ(x)− σ(x)] dx−
∫
Ac

[ρ(x)− σ(x)] dx

= ρ(A)− σ(A)− [ρ(Ac)− σ(Ac)]

= ρ(A)− σ(A)− [1− ρ(A)− {1− σ(A)}]
= 2 [ρ(A)− σ(A)]

≤ ‖ρ− σ‖TVm .

In the last line, we used the fact that supAQ(A) ≥ Q(A) for any specific A.
The proof in the other direction uses some of the same algebra. Suppose A∗

is the A that achieves ‖ρ− σ‖TVm in (2).

2 ‖ρ− σ‖TVm = 2 {ρ(A∗)− σ(A∗)}

=

∫
A∗

[ρ(x)− σ(x)] dx+

∫
Ac

∗

[σ(x)− ρ(x)] dx

≤
∫
A∗

|ρ(x)− σ(x)| dx+

∫
Ac

∗

|ρ(x)− σ(x)| dx

= ‖ρ− σ‖TV .

A third version of total variation distance involves difference in expected
values. The supremum here is over all functions f(x) with |f(x)| ≤ 1 for all x.

‖ρ− σ‖TVf = sup
f

[Eρ[f(X)]− Eσ[f(X)]] (3)

= sup
f

[∫
Rd

f(x)ρ(x) dx−
∫
Rd

f(x)σ(x) dx

]
.

You can prove that this definition is the same as ‖·‖TV by taking

f(x) = 1 if ρ(x) > σ(x) , and f(x) = −1 if ρ(x) < σ(x) . (4)

You get some insight into the use of this definition by considering an inequality
that follows from it

|Eρ[f(X)]− Eσ[f(X)] | ≤ sup
x
|f(x)| ‖ρ− σ‖TV .
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If two probability distributions are close in the total variation sense, then they
give similar expected values for any bounded function, even if it’s discontinuous
as (4).

The term “total variation” is traditional but not completely appropriate. It
arose from the sensible definition of total variation of a function f(x) of one
variable, as

TV(f) =

∫
|f ′(x)| dx .

If f is not differentiable, the definition is

TV(f) = sup
n

sup
x1<···<xn

n−1∑
k=1

|f(xk+1)− f(xk)| .

This total variation is equal to an L1 integral of f ′, which is how the term “total
variation” came to be associated with L1.

Wasserstein distance

The Wasserstein distance is harder to explain but very helpful in high dimen-
sional applications. It starts with the idea of a coupling between probability
measures. Suppose ρ(x) and σ(x) are probability densities on Rd. Suppose
p(x, y) is a probability on R2d = Rd × Rd. We say that p is a coupling between
ρ and σ if

(X,Y ) ∼ p =⇒ X ∼ ρ and Y ∼ σ .
The set of all couplings is (according to Wikipedia, which is always right) Γ(ρ, σ).

Couplings are used in Monte Carlo theory, as today, and also in Monte Carlo
practice, as last week with the Brownian bridge construction. A coupling is a
“story” that gives a way X and Y could have been generated at the same time
but with X ∼ ρ and Y ∼ σ. There is always the “trivial” coupling in which X
and Y are independent. This has p(x, y) = ρ(x)σ(y). If ρ and σ are close, it
should be possible to create “better” couplings with X closer to Y .

For example, suppose X and Y are one component random variables with
X ∼ N (0, 1) and Y ∼ N (µ, 1). You can couple X to Y by taking Y = X + µ.
In probability densities, this is p(x, y) = ρ(x)δ(y− x). Similarly, if Y ∼ N (0, v)
with v > 1 (can’t say σ2 because σ(x) is the PDF), then we can take Y = X+Z
where Z ∼ N (0, v − 1) and Z independent of X.

The Wasserstein distance involves the expected distance between X and Y ,
in the best coupling:

Wp(ρ, σ) = inf
Γ

E[ |X − Y |p]
1
p . (5)

The exponent p should be between 1 and ∞, with p = 1 and p = 2 being
the most common. This definition seems harder to apply that total variation
(1) because it involves more than just integration. Nevertheless, it is useful in
some proofs where natural couplings can be constructed. We seek Wasserstein
differences for complex problems, particularly in high dimensions, where total
variation is too strong.
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2 Lyapunov functions – control the tails

A Markov chain on an infinite state space might “wander to infinity”. This is a
way to avoid having an invariant distribution. Random walk in one dimension
does this, for example. On the other hand, consider a random walk in one
dimension with X ≥ 0 (rejecting proposals that go to X < 0 and “drift” toward
0. For example, Xn+1 = Xn − N (−µ, σ2) with µ > 0, rejecting proposals
Xn+1 < 0.

3 Cheeger inequality – control bottlenecks

An MCMC method can be slow if it has bottlenecks. A bottleneck is an unlikely
set that Xn has to pass through to get from one likely set to another. The double
well potential with equal depth wells has a bottleneck at the local maximum of
the potential between the two wells. The MCMC process will spend a long time
on one well before making a transition to the other.

The conductance is a way to define and measure bottlenecks. A set A defines
a bottleneck if ρ(A) ≤ 1

2 but if Xn ∈ A then Xn+1 ∈ A with high probability.
The technical definition of conductance is

Φ = inf
ρ(A)≤ 1

2

Prρ(Xn+1 /∈ A | Xn ∈ A) (6)

We need some restriction like ρ(A) ≤ 1
2 , though not this one exactly, because

otherwise we could take A to be the whole space and get Φ = 0 because it’s
impossible to escape the whole space.

Jeff Cheeger showed (in a different context but with the same ideas and
almost the same definition) that the process has a spectral gap of size at least Φ2.
There is a beautiful inequality of Lovasz and Simonovitz that gets to Cheeger’s
point in a different way. This goes by a function un(λ) defined for 0 ≤ λ ≤ 1
defined by

un(λ) = sup
ρ(A)=λ

ρn(A)− λ .

If ρn = ρ then un(λ) = 0 for all λ. It is not hard to show that un(λ) is a concave
function of λ. The inequality is

un+1(λ) ≤ 1

2

[
un((1− Φ2)λ) + un((1 + Φ2)λ)

]
. (7)

This shows that un+1(λ) ≤ un(λ) for all λ. It also shows (with more work)
that un → 0 as n → ∞ at a rate that depends on 1− Φ2. This gives the same
convergence rate as Cheeger’s spectral gap, but in a stronger sense.
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