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1 Control variates

Control variates is (are?) a variance reduction method that applies when you
have an approximate solution to your problem. Suppose X and Y are scalar
random variables that represent the “quantity of interest ” or QOI, and an
approximation to X that is better understood. The important things are that
X and Y are correlated, the stronger the correlation the better, and that the
expected value of Y is known.

We seek
A = E[X] .

There is a way to generate pairs (X,Y ), either by direct simulation or MCMC.
We generate n sample (Xk, Yk) pairs.

B = E[Y ] is known.

The control variate estimator is

Âβ =

[
1

n

n∑
k=1

(Xk − βYk)

]
− βB (1)

The choice β = 0 is the direct estimate without the control variate. You can
check that Âβ is unbiased in the sense that, for any β,

E
[
Âβ

]
= A .

We use the control variate Y and the multiplier β to reduce the variance.
Suppose at first that the samples are independent and we know the covari-

ance

σXX = var(X) , σY Y = var(Y ) , σXY = cov(X,Y ) , ρXY = corr(X,Y ) =
σXY√

σXX σY Y
.

Then we can optimize the estimator variance by miniizing

var
(
Âβ

)
=

1

n
var(X − βY )

=
1

n

[
σXX − 2βσXY + β2σY Y

]
.

The answer is
β∗ =

σXY
σY Y

. (2)
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The resulting variance may be written as

var(X − β∗Y ) = σXX

(
1− σ2

XY

σXX σY Y

)
var(X − β∗Y ) = var(X)

(
1− corr(X,Y )2

)
The control variate estimator variance is smaller than the direct estimator vari-
ance by a factor that depends on the correlation between X and Y . Note that
perfect correlation ρXY = ±1, leads to a zero variance estimator. People often
seen good variance reduction methods by starting with impossible zero variance
estimators and seeing how close they can come with a practical algorithm.

In practice, it is unlikely that the optimal multiplier (2) would be known.
If we don’t know the mean of X, it is unlikely that we know the covariance
between X and Y . Instead, we can estimate them from the same MC samples

β̂∗ =
σ̂XY
σ̂2
XY

. (3)

We can use the standard estimators

σ̂XY =
1

n− 1

n∑
k=1

(
Xk −X

) (
Yk − Y

)
σ̂Y Y =

1

n− 1

n∑
k=1

(
Yk − Y

)2
X =

1

n− 1

n∑
k=1

Xk

Y =
1

n− 1

n∑
k=1

Yk

The resulting estimator is Âβ̂∗
. This has variance slightly larger than if the

optimal multiplier were known Âβ∗ . It also is slightly biased.
I want to talk about errors in estimating β∗ and how they effect the ultimate

estimate of A. We have done estimates like this before. The new thing here is
that we use inexact estimated quantities in formulas. Estimation errors might
be amplified as they propagate through a string of formulas. From a technical
point of view, what I’m doing amounts to repeated applications of the central
limit theorem and what is called Slutsky’s theorem. To start, the central limit
theorem for X may be expressed as

X ≈ A+
C1√
n
ZX , ZX ∼ N (0, 1) . (4)

The central limit theorem says that the error is Gaussian and a calculation
says the variance is proportional to 1

n . The right side of (4) includes a random
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variable with that distribution. The expression (4) is useful because you can
plug it into other equations and quickly see which error terms are the largest.
For example,

σ̂XY =
1

n− 1

n∑
k=1

(
Xk −A+

C1√
n
ZX

)(
Yk −B +

C2√
n
ZY

)

=
1

n− 1

n∑
k=1

[
(Xk −A) (Yk −B) +

C1√
n
ZX (Yk −B) + (Xk −A)

C2√
n
ZY +

C1C2

n
ZXZY

]

=

[
1

n− 1

n∑
k=1

(Xk −A) (Yk −B)

]
+

3C1C2

n
ZXZY .

This calculation uses the formula 1
n−1 = 1

n . It shows that the error in estimating

the covariance σXY is given by the central limit theorem as though X = A and
Y = B. That error is of order 1√

n
, while the error from misestimating A and B

is order 1
n . This calculation shows that the bias, at least to order 1

n depends on
the covariance of ZX with ZY , which is proportional to cov(X,Y ). The bias is
order 1

n .
To continue, write this result as

σ̂XY = σXY +
C3√
n
ZXY +

3C1C2

n
ZXZY .

A similar calculation leads to

σ̂Y Y = σY Y +
C4√
n
ZY Y +

C2
2

n
Z2
Y .

The conclusions about σ̂Y Y are as above. These expressions lead to

β̂∗ =
σXY + C3√

n
ZXY + 3C1C2

n ZXZY

σY Y + C4√
n
ZY Y +

C2
2

n Z
2
Y

=
σXY
σY Y

+
1

σY Y

[
C3√
n
ZXY +

3C1C2

n
ZXZY

]
− σXY
σ2
Y Y

[
C4√
n
ZY Y +

3C2
2

n
Z2
Y

]

+
σ2
XY

σ3
Y Y

C2
4

n
Z2
Y Y +O(n−

3
2 ) .

This calculation is long, but not hard. It shows that

β̂∗ = β∗ +
1√
n

( mean zero Gaussian ) +
1

n
( random variable, mean not zero ) .

This understanding of β̂∗ can be inserted into the control variate estimator
and we can calculate the results as above. The result is that estimating β∗
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increases the variance of the estimator a little and adds bias of order 1
n . You

could calculate the leading term in the bias.

1.1 Example, sampling with an approximate density

Control variates make a significant difference in many problems. It is a good
idea as a Monte Carlo person always to look for cheap or useful approximations
that can be made into control variates. This might involve an approximate
analysis, a linearization, or just some intuitive approximation. The method
comes with error estimates, so you can tell if your control variates are helping.

Here is an example control variate that is often used in practical Bayesian es-
timation problems. Suppose you have a posterior distribution (or a distribution
you got another way) of the form

ρ(x) =
1

Z
e−βφ(x)

You want to estimate the posterior expectation of something

A = Eρ[V (X)] .

You could do this using MCMC samples of ρ. But there may be an alternative
estimator in some cases that avoids MCMC. Depending on the problem, the
extra variance of the alternative estimator may be acceptable because direct
sampling is better (cheaper, independent samples) than MCMC. This estimator
uses a Gaussian approximation to ρ.

Suppose the mode (maximum a-posteriori point, or MAP) is

x∗ = arg min
x
φ(x) .

If β is large, or if the data strongly confines X to be near x∗, you can use
a quadratic approximation of φ about x∗. The first derivative terms vanish
because x∗ is a minimizer. With quadratic terms, this is

φ(x) ≈ φ(x∗) +
1

2
(x− x∗)tH(x− x∗) .

Here, H is the Hessian matrix of second derivatives of φ evaluated at x∗. This
gives a Gaussian approximation to the distribution

ρ(x) ≈ σ(x) = N (x∗, β
−1H−1) .

The formula for σ is

σ(x) =
β
d
2

√
det(H)

(2π)
d
2

e−
β
2 (x−x∗)tH(x−x∗) .

The importance sampling estimator using σ uses

A = Eσ[V (X)L(X)] , L(x) =
ρ(x)

σ(x)
.
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The estimator is

Âσ =
1

n

n∑
k=1

V (Xk)L(Xk) Xk ∼ N (x∗, β
−1H−1) i.i.d. .

The variance is probably higher than the estimator using ρ. When we used
importance sampling to reduce variance, we designed σ taking into account
V (x). We didn’t do that here. However, there is a direct sampler for the
Gaussian.

It might be that the Gaussian expectation of V is explicitly known. This
would happen if V (x) were a polynomial or exponential function. In that case
we would know

B = Eσ[V (X)]

We use the framework of control variates with random variables

U = V (X)L(X) , X ∼ N (x∗, β
−1H−1)

W = V (X) , X ∼ N (x∗, β
−1H−1) .

We know E[W ] and want E[U ]. If the Gaussian approximation is accurate, there
should be a good correlation between U and W .

2 Diffusion processes

A diffusion process is a probability distribution for paths Xt ∈ Rn. The compo-
nents are Xj,t, for j = 1, · · · , n. The dynamical model is a stochastic differential
equation

dXt = a(Xt)dt+ b(Xt)dWt . (5)

The first term on the right is a deterministic drift term. Without the second
term on the right, the equation would be written in a more familiar form

d

dt
Xt = a(Xt) .

The second term on the right is the noise term. The processWt is an n−dimensional
Brownian motion. What is important here about Brownian motion is that in-
crements Wt+s−Wt are Gaussian with mean zero and covariance sI. Stochastic
models of engineering or physical systems often take the form of stochastic dif-
ferential equations.

The Euler Maruyama method for approximating the SDE involves a time
step ∆t and discrete times tk = k∆t. The approximation to Xtk will be X∆t

k .
The method is

X∆t
k+1 = X∆t

k + ∆t a(X∆t
k ) +

√
∆t b(X∆t

k )Zk , Zk ∼ N (0, I) .

A path is a sequence X∆t = (X∆t
1 , · · · , X∆t

N ). The number of components of
X∆t is d = nN . We can find the probability density for the path X∆t using the
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fact that the conditional density of X∆t
k+1 is normal. The probability density for

a path is the product of these conditional densities

ρ(x) =
1

Z

N−1∏
k=0

e(xk+1−xk−a(xk)∆t)tC(xk)−1(xk+1−xk−a(xk)∆t)t , C(x) = cov(∆x) = b(x)bt(x) .

It’s a clumsy formula but not hard to code or understand.
Suppose you know the starting point x0 and you want to make a path up

to time T . You can generate an approximate sample path by choosing ∆t with
an integer N = T/∆t and using the Euler Maruyama formula N times for the
N time steps. A harder problem is to sample paths that have been observed at
more than one time. For example, suppose x0 and XT = xT are known and we
want to generate sample paths from this conditional density. You could start
by trying the single time Metropolis method. The dimension is d = nN which
is likely to be large, so the auto-correlation time may be a problem. Jonathan
Weare (now “Professor Weare”) wrote his PhD thesis on this sampling problem.

Now suppose you want
A = E[V (XT )] .

You could make M independent samples by direct Euler time stepping. This
is a lot of work if ∆t is small and N is large. There is a multi-scale control
variate strategy due to Michael Giles for this. In the simplest two-scale version
it involves coupling simulations with ∆t and 2∆t. The “coarse scale” simulations
with 2∆t may be approximately like the “fine scale” simulations with ∆t, but
suppose the coarse simulations are not accurate enough. We use the notation

A∆t = E
[
V (X∆t

T )
]
.

The work to estimate A2∆t is half the work to estimate A∆t. The strategy of
Giles is to estimate the two quantities

A2∆t , A∆t −A2∆t .

You add these to estimate A∆t. The second quantity is small, so it may be
estimated to good accuracy with fewer sample paths.
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