
http://www.math.nyu.edu/faculty/goodman/teaching/MonteCarlo20/

Class notes: Monte Carlo methods
Week 10, Affine invariant samplers, simulated tempering

tentative Jonathan Goodman
November 18, 2020

1 Affine invariant samplers

An affine transformation is a function change of variables

y = Ax+ b , x(∈ Rd) −→ y(∈ Rd) . (1)

[Terminology: a function with f(x1 + ax2) = f(x1) + af(x2) is linear. In finite
dimensions, a linear map has the form f(x) = Ax, for some matrix A. The map
(1) is linear only when b = 0. Otherwise it is affine. Linear transformations
suffice for everything in today’s class. We will always have b = 0. In this context,
even strictly linear transformations are called affine.] Affine transformations
are used in computing as pre-conditioners to make numerical algorithms work
better. There are situations where a good pre-conditioner makes a big difference,
but such a pre-conditioner is hard to find and depend sensitively on problem
specific details.

An affine invariant algorithm, informally, is one that does the same thing
with or without an affine (linear usually) pre-conditioning. You can think of
affine invariant methods as automatically working in the best set of variables
that can be achieved by a linear transformation. Affine invariant algorithms are
more likely to work well “out of the box” without problem-specific tuning. Affine
invariant MCMC algorithms are the basis of some popular software packages for
sampling, particularly in Bayesian statistics.

There is an analogy between sampling and optimization. Both problems
involve exploring an energy surface given by a function φ(x), either to sample
the distribution 1

Z e
−φ(x) or to find x values with small φ. Optimization is a

simpler context to explain ill-conditioning and the power of an affine invariant
algorithm.

A basic optimization algorithm is gradient descent, which is the iteration

xk+1 = xk − sk∇φ(xk) . (2)

The number sk is the step size or learning rate. Suppose you have a current
iterate, xk and want to look in some direction in Rd for a better iterate. We
call this the search direction, p. For gradient descent, the search direction is

pk = −∇φ(xk) . (3)

and the step is
xk+1 = xk + skpk .

1

The direction (3) at least is a direction determined by the problem, if∇φ(x) 6= 0.
It is a descent direction in the sense that φ is decreasing in that direction. This
means that if the step size is small enough, then φ decreases.

d

ds
φ(x+ xp)

∣∣∣
s=0

< 0 =⇒ φ(x+ sp) < φ(x) , if s is small enough .

The derivative on the left is calculated using the chain rule, in vector notation,
as (assuming ∇φ(x) 6= 0)

[∇φ(x)]t p = [∇φ(x)]t∇φ(x) = −‖∇φ(x)‖2 < 0 .

This allows you to prove the following

Theorem. (Proof not given, but a proof oriented person could do it) Suppose φ
is is twice differentiable and the learning rate parameters sk > 0 satisfy the two
conditions

max
k

sk is small enough , (4)

∞∑
k=1

sk =∞ . (5)

Then at least one of the following things happens

• ‖xk‖ → ∞ as k →∞

• lim
k→∞

xk = x∗ exists, and ∇φ(x∗) = 0.

The first condition (4) is natural if you want xk to have a limit, but how small
is “small enough” depends on φ. If the second condition is violated than xk can
converge to x∗ with ∇(x∗) 6= 0. An example is d = 1 and φ(x) = x.

Gradient descent can work poorly for optimization problems where φ is ill
conditioned. In this context, “ill conditioned” just means that gradient descent
works better after pre-conditioning. In other scientific computing contexts, “ill
conditioned” means that the answer depends so sensitively on the data that
it is hard to compute in floating point arithmetic. These senses are related
in the sense that if φ(x) = xtAx, and the linear algebra problem: “find x so
that Ax = b” is ill conditioned in the numerical computing sense, then φ is ill
conditioned for gradient descent. For example, consider

φ(x1, x2) =
1

2

(
x21 + εx22

)
. (6)

Then
p = −∇φ(x) = (−x1,−εx2) .

If you move in the direction of p, then x2 changes little. If you adjust s so that
x2 changes a lot, then x1 changes too much. Another example is

φ(y1, y2) = (y1 + y1)2 + ε(y1 − y2)2 . (7)

2

These are equivalent, via the orthogonal transformation(
x1
x2

)
=

1√
2

(
1 1
1 −1

)(
y1
y2

)
. (8)

Dimensional analysis is a quick way to get some disrespect for gradient de-
scent. We write in components as

xj,k+1 = xj,k − pk
∂φ(xk)

∂xj
.

In a Bayesian statistics problem such as the amplitude and frequency problem
from Week 9, different components of x have different units. In that case, some
are amplitudes and some are frequencies. Some of the components have the
foem

new amplitude = old amplitude + s
∂φ

∂ amplitude

This makes dimensional sense if s has units

[s] =
[amplitude]2

[φ]
.

The frequency components make dimensional sense if s has units

[s] =
[frequency]2

[φ]
.

These cannot both be true.
An optimization code using gradient descent might ask the user to use units

for the different components xj so that the same step size makes sense for all
components. Mathematically, changing units on component xj mean multiply-
ing xj by a unit conversion factor (for example, 100 centimeters in a meter).
That is the same as multiplying x by a diagonal matrix with the scaling factors.
For the problem (6), the scaling matrix could be

A =

(
1 0

0 ε−
1
2

)
.

It might take a user some time to do a good job with this, as the natural sizes
of component xj might depend not only on the problem class (amplitudes and
frequencies), but on the details of a specific problem (how well a frequency is
determined by the data).

The example (7) illustrates another form of ill conditioning that arises in
statistics. Here, φ is strongly effected by the sum y1 + y2 but depends weakly
on the difference y1 − y2. This kind of thing happens when y1 + y2 is strongly
constrained by the data but y1 − y2 is not. For example, suppose we have
frequencies ω1 and ω2 that are nearly the same. Then A1 cos(ω1t) +A2 cos(ω2t)
depends more strongly on A1 +A2 than on the difference. This depends on the
relation between ω1 and ω2, which can change from problem to problem.

3

To summarize, gradient descent can work poorly for ill conditioned problems.
An affine change of variables can turn an ill conditioned problem into one that
is well conditioned (not ill conditioned). Affine pre-conditioning is necessary
and difficult for gradient descent to work well in practice.

Newton’s method is an optimization algorithm that uses the Hessian matrix

Hij(x) = ∂xi
∂xj

φ(x) .

The search direction is
p = H(x)−1∇φ(x) .

This is affine invariant in the following sense. Suppose y = Ax is a linear
transformation and ψ(x) = φ(Ax). Suppose yk = Axk, Suppose you move y by
applying Newton’s method to φ and you move x by applying Newton’s method
to ψ. Then yk+1 = Axk+1. The proof is Exercise 1.

In the “optimization community” (people who spend their days developing
optimization algorithms), it is widely understood that Newton’s method is bet-
ter than gradient descent for general problems that optimization software would
be used for. This is explained by the true fact that Newton’s method had faster
local convergence. Once xk is close enough to x∗, the convergence is very fast.
This is a nice property (local quadratic convergence), but I think the power of
Newton’s method for general problems is that it is affine invariant.

An affine invariant sampler would have the property that if ρ(y) = 1
Z e
−φ(y)

and if σ(x) = 1
Z e
−φ(Ax), and if the sampler has the form Yk+1 = F (Yk, ξk, φ),

where ξk is independent of the problem and i.i.d., and if Xk+1 = F (Xk, ξk, ψ)
(still taking ψ(x) = φ(Ax)), then Xk+1 = AYk+1. Affine invariant samplers can
lead to MCMC software that is quite robust, even for problems that have not
been “tuned” (pre-conditioned).

There seem to be two ways to create affine invariant samplers. One is en-
semble samplers. The other is samplers that use derivative information.

An ensemble sampler moves an ensemble (“ensemble” is “set” in French) of
samples, called walkers. An ensemble of size L has walkers x1, · · · , xL. The
ensemble is E = (X1, · · · , XL). The target density for E is the distribution in
which the walkers are independent samples of the target density for the walkers,
ρ(x). That is, we seek

E ∼ f(e) =

L∏
i=1

ρ(xi) . (9)

Clearly, if E is in its target distribution, then the individual walkers are in the
target distribution. The dimension of “ensemble space” is Ld, where L is the
ensemble size and d is the number of components of x.

A sampler could be affine invariant if it used the covariance matrix of the
target distribution to determine proposals. An affine change of variables then
would change the covariance matrix, which would change the proposal distribu-
tion. This would allow the proposal distribution to be aware of the conditioning
of the problem, and take big steps in directions where the covariance is large

4

(loosely constrained) but small steps in directions that are more tightly con-
strained. It is impossible to know the covariance in advance, but the empirical
covariance matrix of the walkers in the ensemble are an estimator of the true
covariance.

Ensemble samplers typically work in Gibbs sampler mode – moving one
walker at a time leaving the other walkers fixed. We will call Xi the walker
being moved and Eci = {Xj | j 6= i} the complementary ensemble. Ensemble
samplers rely on the observation that it is possible to maintain detailed balance
in ensemble space for the target distribution (9) even when the move of Xi

depends on the complementary ensemble. The argument is the same as for the
Gibbs sampler. Suppose we fix the walkers in the complementary ensemble and
move Xi to X ′i that has density

X ′i ∼ R(x′i | Xi, E
c
i) .

This satisfies detailed balance for component i if

ρ(xi)R(x′i | xi, Eci) = ρ(x′i)R(xi | x′i, Eci) .

This is the same as before, but conditioned on the complementary ensemble:

Pr(observe xi → x′i | Eci) = Pr(observe x′i → xi | Eci) .

You can see that this condition implies detailed balance in ensemble space. If
E′ is the same as E except with X ′i instead of Xi, then

Pr(observe E → E′) = Pr(observe E′ → E) . (10)

I will come back to this after talking about some specific ensemble moves.
These moves really are proposal distributions for a proposal Xi → Yi. If

the proposal is accepted, then X ′i = Yi. Otherwise X ′i = Xi. The walk move
is defined by the empirical covariance matrix of the complementary ensemble.
The complementary mean is

X
c

i =
1

L− 1

∑
j 6=i

Xj .

The complementary covariance matrix is

C(E′i) =
1

L− 1

∑
j 6=i

(
Xj −X

c

i

)(
Xj −X

c

i

)t
.

The move proposes
Y ∼ N (Xi, r

2C(E′i)) .

Here r is a proposal size parameter. You tune the sampler by choosing a good
r. This is not easy, but it is easier than trying to find a covariance matrix for
the proposal distribution. It is one number, not a d× d matrix with about 1

2d
2

parameters. Moreover, being affine invariant, it will have a reasonable order of
magnitude for r even without tuning.

5

2 Exercises

1. Formulate an equation that says Newton’s method for optimization is
affine invariant and verify that it is true.

2. Show that if you use an affine invariant sampler, then the auto-correlation
function for any observable is invariant under affine transformations of the
variables. Note, this is not necessarily true of the auto-covariance function
because these might involve the scale factors.

6

	Affine invariant samplers
	Exercises

