
http://www.math.nyu.edu/faculty/goodman/teaching/MonteCarlo20/

Class notes: Monte Carlo methods
Week 1, Introduction, error bars

Jonathan Goodman
September 8, 2020

1 About the course

This is a course on Monte Carlo methods, offered from an applied math point of
view. I assumes that the student is familiar with probability at the level of the
Courant class Basic Probability. I also assume a high level of “mathematical ma-
turity”. This means that the student has been exposed to much graduate level
applied math, including linear algebra, multi-variate calculus, and numerical
computing at the level of the Courant class Scientific Computing. For example,
Section 2 refers to Stirling’s approximation and the trapezoid rule for numerical
integration. The student either should know these or be able to understand an
explanation she or he finds on the web. Mathematical maturity also refers to
some practical intuition and experience digesting mathematical explanations.
For example, if the time needed to run an algorithm grows exponentially with
n, then the algorithm will not run in practice with large n.

The assignments will call for programming in Python 3.X. Students who
have done scientific programming in other languages (C, C++, Matlab, R, FOR-
TRAN) should be able to pick up Python 3. Scientific programming is harder
and requires more expertise than other programming. For example, one must
be aware that floating point arithmetic is not exact and have some appreciation
or experience with the size of roundoff error.

The classes and the exercises are designed not only to teach Monte Carlo
methods, but to expose you to aspects of modern applied mathematics more
broadly. For this, we take the opportunity to explain a little about the back-
grounds of real applications of Monte Carlo. You may have to do a little back-
ground reading to appreciate some of the specific applications. This is part of
your training in applied mathematics. These weekly notes are intended to re-
semble a rambling lecture more than a carefully crafted reference text. You may
already have noticed that sometimes the reader is called “you” and sometimes
“the reader” or “the student”.

Much of the class will be conducted online because of COVID-19. The
material for the week will be posted a few days before the class meeting time.
This will take the form of written notes and possibly some video. You should
read or watch and do a quick online quiz. The notes and video will be on the
public site (where these notes are), but the quiz will be on the NYU Classes site.
More serious understanding will be tested in the assignments. As I am typing
this, I do not know how much in-person contact will be possible or desirable.
I will make myself available in online “office hours”. The zoom link is on the
NYU Classes page for the course. If you aren’t registered and want to “attend”

1

office hours, email me for an invitation. I hope you will find a way to share
written mathematical reasoning online. By this I mean some way to hand write
formulas and diagrams so that I or others can see. This can be done using a
camera connected to the computer (my approach) or by screen sharing a device
with a writing stylus such as an Apple ipad or a Microsoft Slate.

The course has a final project that students should do in groups of one
(individual) to maybe 4. Each group will give a presentation during finals week
and prepare a document that explains the project. The project is a major part
of the class. You may choose a topic related to Monte Carlo depending on your
talents and interests. Starting Week 4, I will suggest some topics and start
organizing the groups.

The course grade will be graded based on frequent assignments and a final
project. The assignments involve programming and theoretical work. At the
outset, I intend to give 65% weight to assignments, 5% weight to weekly quizzes,
and 30% weight to the final project. I plan to use the following grading scale:

• A for excellent work (must be earned)

• A- for high quality but not excellent work

• B+ for good work, possibly with some reservations

• B for students who possibly struggled but made a good faith effort

• Less than B for students who made less than a good faith effort. Like A,
this must be earned.

My experience is that almost all students will get one of the standard grades
A, A- B+, B, and in roughly equal proportions. Grades are not competitive,
and I would love to skew toward the higher grades. A few people will earn sub-
standard grades. Please contact me as soon as you find yourself slipping. We
probably can work something out. The class should be a learning experience,
not a stressful one. Feel free to email me about this at any time.

2 Introduction to Monte Carlo

The term Monte Carlo methods refers to using computer generated random
variables in computing. Conceptually speaking, the easy part is creating algo-
rithms to simulate a specified random process or random variable. I call this
direct simulation. This course will discuss two related topics: How accurate is
a simulation likely to be? Can you change the rules to do a different simulation
that produces the same or nearly the same answer with less error?

To correct the first paragraph, some Monte Carlo methods are applied to
problems that do not have probability in their statements. One sub-field of
Monte Carlo, called quantum Monte Carlo, uses Monte Carlo methods to cal-
culate the electronic structure of atoms and molecules. Monte Carlo methods
also have been used to investigate the distribution of prime numbers.

2

A more insightful definition is that Monte Carlo methods are computational
methods that use random numbers to compute quantities that are not random.
This definition comes from Malvin Kalos. Suppose that X is a random variable
and you want to know A = E[X]. The direct approach would be to estimate A
by taking the average of a set of samples of X. This is described in Subsection
2.2. This course describes indirect methods that estimate A more accurately
or faster than the the direct method. Week 2 describes importance sampling,
which is one such indirect method. The insight of the Kalos definition is that
you are interested in X only as a way to estimate A. This means there may
better ways to estimate A, algorithms that do not use X.

The term Monte Carlo was first used by people at Los Alamos National Lab-
oratory in New Mexico. They had the idea to express certain high dimensional
integrals as the expected values of random variables and then simulate the ran-
dom variables using a random number generator. The name comes from the
city of Monte Carlo, which is the capital of a tiny European country of Monaco.
The city was the gambling center of Europe, which is why the European-born
scientists at Los Alamos associated Monte Carlo with random variables. The
word “Monte” means mountain, and “Carlo” is a version of Charles. In English,
they could be called “Mount Charles” methods, but they are not.

2.1 Curse of dimensionaltiy

The application of Monte Carlo methods to high dimensional integration illus-
trates the curse of dimensionality, which says that problems in high dimensions
(problems with many variables) are “cursed” by being hard to solve. Methods
that apply to low dimensional problems, problems with one variable or just
a few variables, become impractical in high dimensions. Computer scientists
use the term complexity to describe the computer time or memory needed to
solve a problem. Many algorithms have complexity that “scales exponentially”
with the dimension. We say one function “scales like” another function (non-
mathematicians might say “quantity” instead of “function”) if there is a rough
proportionality between them. If one quantity doubles, then the other roughly
doubles. It is not a precise concept, but a useful one nonetheless.

Taylor series are an example of this exponential complexity. Consider an
algorithm that uses a Taylor series expansion up to order n in d variables. For
one variable, which is d = 1, this would be

a0 + a1x+ · · ·+ anx
n .

There are n+1 terms. For two variables, which is d = 2, the expansion to order

3

n is

f(x, y) ≈ a0

+a1,0x+ a0,1y

+a2,0x
2 + a1,1xy + a0,2y

2

+ · · ·
+an,0x

n + · · ·+ a0,ny
n .

There is one term of order zero, two terms of order 1, three terms of order 2,
and n + 1 terms of order n. For three variables, there are three terms of order
1, which correspond to linear terms x, y, and z. There are six terms of order
2, which correspond to x2, y2, z2, xy, xz, and yz. There are ten terms of order
3. You already can see that the number of terms grows faster with n when d
is larger. For d variables, there are d + 1 first order terms, d(d + 1)/2 ≈ 1

2d
2

quadratic terms, and d(d+ 1)(d+ 2)/(3 · 2) ≈ 1
6d

3 cubic terms.

A combinatorics problem

How many terms are there in d variables of order not more than n? This
is a problem in combinatorics and here is the clever solution I learned once.
Consider n + d boxes, numbered from 1 to n + d. Choose exactly d of them
and call the chosen boxes 1 ≤ b1 < b2 < · · · < bd ≤ n + d. Let α1 = b1 − 1
be the number of boxes to the left of b1. Let α2 = b2 − b1 − 1 be the number
of boxes between b1 and b2, not counting either end box. Continue in this way,
so that αd = bd − bd−1 − 1. Note that αk = 0 if bk = bk−1 + 1, which is to
say that bk−1 and bk are adjacent. Color the chosen boxes black, so there are
d black boxes. Color the rest of the boxes white, so there are n white boxes.
The sequence α = (α1, . . . , αd) is a multi-index. For each multi-index there is a
monomial xα = xα1

1 · · ·x
αd

d . The degree of xα is |α| = α1 + · · ·+αd. This is the
number of white boxes to the left of bd, so it is less than n, which is the number
of white boxes in all. This establishes a one to one correspondence between size
d subsets of d+n boxes and monomials of degree not more than n. The number
of such subsets is “n+ d choose d”, which is

Nn,d =

(
n+ d

d

)
=

(n+ d)!

n! d!
.

My intuition is that factorial expressions like this are big when n and d are
large. Stirling’s formula is a way to figure out how big. Stirling’s approximation,
or Stirling’s formula is a term used for approximations of the factorial function.
There are different versions for different degrees of accuracy. A starting version
is that for large m,

m! ≈ mme−m . (1)

4

When d and n are large, the e−m parts cancel and we get

Nn,d ≈
(n+ d)n+d

nndd

=
(n+ d)n

nn
(n+ 1)d

dd

Nn,d ≈
(

1 +
d

n

)n (
1 +

n

d

)d
(2)

The quantities in parentheses are greater than one and they are being expo-
nentiated. For example, if n = d (Taylor series order equals the number of
variables), then both terms in parentheses are equal to 2. Then, with some
more approximations to simplify expressions,

Nd,d ≈ 22d . (3)

That’s the curse of dimensionality. For d = 1 or d = 2, it would be feasible
to take Taylor series up to order n = 100. But that is impossible for d = 10,
say. With d = 10 and n = 10, the approximate formula (3) gives 1020. The US
Department of Energy, and similar agencies in Russia, Japan, and China, are
competing hard and spending billions of dollars per year to build an “exascale”
computer. “Exa” is for 1018, which is 100 times smaller than 1020. Exa is bigger
than “peta-scale” (1015), which is bigger than “tera” (1012) and “giga” (109),
etc. Exercises 1 and 2 have more on this point.

The curse of dimensionality makes it hard to create Monte Carlo methods
and hard to understand them. Geometric intuition that works in low dimen-
sions is wrong in high dimensions. Week 2 will have more examples of this.

The curse of dimensionality is the reason for Monte Carlo methods.

2.2 Sample averages and error bars

Suppose X = (X1, . . . , Xd) ia a multi-component random variable with proba-
bility density ρ(x). Suppose there is a function V (x) and we want to know

A = E[V (X)] . (4)

Suppose there is an algorithm to generate independent samples Xk ∼ ρ. Then
the sample average (or sample mean) is a “direct” way to estimate A:

ÂN =
1

N

N∑
k=1

V (Xk) . (5)

The “hat”, as in Â, indicates that Â is an estimate of A.
Error bars are appraisals of the statistical accuracy of Monte Carlo estimates.

The number A in (4) is not random. [This is a central point in Monte Carlo,

5

a point that allows Monte Carlo to go far beyond direct simulation.] However,

the estimate Â is random. Suppose σÂ is the standard deviation

σÂ = std dev(Â) =
(

var(Â)
) 1

2

. (6)

If var(V (X)) < ∞, and if we use the sample average estimate (5), then the
standard deviation of the estimator is related to the standard deviation of V (X)
by the formula you should know (or quickly look up)

σÂ =
1√
N
σV =

1√
N

(var(V (X)))
1
2 . (7)

The standard estimator of σV , which you also should know or look up, is

σ̂2
V =

1

N

N∑
k=1

(
V (Xk)− Â

)2
. (8)

In Monte Carlo practice, you make the samples Xk, you evaluate the quantity of
interest Vk = V (Xk), you calculate the sample average (5), and you evaluate the
sample variance (8). Then you estimate the standard deviation of the estimator
using

σ̂Â =
1√
N

(
σ̂2
V

) 1
2 . (9)

When you’re done, you report something like

A = Â
(
±σ̂Â

)
. (10)

Whenever you do Monte Carlo estimation, the answer you report should be in
this form – estimated value Â, and error bar σ̂.

When we say σ is the error bar, we mean that the actual error is on the
order of σ. The actual error is Â− A. If N is large enough so that the central
limit theorem (look this up if you don’t remember it) applies, and if you use the
error bar (9), then ∣∣∣Â−A∣∣∣ ≤ σ̂Â about 66% of the time,∣∣∣Â−A∣∣∣ ≤ 2σ̂Â about 95% of the time,∣∣∣Â−A∣∣∣ ≤ 3σ̂Â about 99% of the time.

We use this to interpret the error bar report (10). On a graph, the error bar

is a line segment [Â − σ, Â + σ]. The line segment may be drawn as a bar in
a plot. The graph does not imply that A is inside the error bar (the interval).
The probability of this is only about 66%. Rather, the size of the error bar tells
the person looking at the graph about how large the error is likely to be. If you

6

put 20 Monte Carlo estimates with error bars in a single plot, about a third of
them, roughly 7, will not contain the actual A.

A statistician might call our error bar (10) a one standard deviation error
bar. This error bar is what statisticians call a confidence interval. Our one
standard deviation error bar/confidence interval is smaller than is recommended
in statistics classes. They usually recommend two standard deviations, which
would be Â(±2σ). This is the “95% confidence interval”. This difference is
cultural and not always followed. In this class, I will always give one standard
deviation error bars and suggest that you do also. The difference, for me, is
the expectations of the person looking at your results. If it’s a Monte Carlo
practitioner (like you), she/he will expect that the error is on the order of the
error bar, not much bigger and not much smaller. If she/he is a non-technical
person used to “consuming” statistical data, then she/he is likely to expect that
the true value is very likely to be inside the error bar, so that she/he can have
confidence in the information you’ve provided. To me, a plot of 20 Monte Carlo
runs with two standard deviation error bars is a little silly, as the actual error
is usually much less than the “estimated” error. As I said, this is cultural and
esthetic, not scientific. It is a good idea to tell the consumer which error bar
you are using.

Don’t put error bars on error bars. This advice comes from my Monte Carlo
mentor Malvin Kalos (co-author of the great Monte Carlo Methods book with
Paula Whitlock). The error bar is a rough guess at the size of the error. A rough
guess at the error bar is good enough for this purpose. When we get to Markov
chain Monte Carlo, often called MCMC, it will be hard to make error bars at all.
MCMC error bars are never as accurate as (10). Even for the direct estimate
(8) there are issues people ask about that should usually be unimportant. In
statistics classes it is common to use N − 1 instead of N in the denominator of
the variance estimator (8). This is because “N − 1 is the number of degrees of
freedom left after you take away one by estimating the mean”. It’s also because
with N − 1 the estimator would be unbiased. The bias of an estimator is the
difference between the expected value of the estimator and the quantity being
estimated. In this case

σ2
V = var(V (X)) = E

[
1

N − 1

N∑
k=1

(
V k − Â

)2]
.

I have two answers to this. One is that if it makes a noticeable difference, then
the sample size N is too small. It is rare to have a Monte Carlo sample with N
as small as 10. But if N = 10, it would be fine to divide by 10 instead of 9 and
have a 10% bias in the error bar.

Another answer is to ask why you want an unbiased estimator at all. The
error bar involves the standard deviation, which is the square root of the vari-
ance. If Y is a random variable whose expected value is σ2

V , then Y
1
2 whose

expected value is less than σV .

7

2.3 Bad algorithms

Let ÂN be some Monte Carlo estimator of a quantity A that uses N “work”.
This could be N independent samples or some more complex strategy with N
steps. The method is correct if ÂN → A as N → ∞. A correct Monte Carlo
estimator may be “bad” in the sense that ÂN is not an accurate estimate of
A unless N is very large, sometimes impossibly large. A Monte Carlo expert
spends much of her or his time looking for complicated but good methods when
there already is a simple but bad method. A bad method need not be wrong
in the sense that it does not converge. It might just be that this theoretical
convergence can’t happen in your lifetime.

One simple measure of accuracy is the relative mean square deviation, or
RMSD

R2
N = E

(ÂN −A
A

)2
 . (11)

The absolute error is ÂN −A. More useful is the relative error,

ÂN −A
A

.

For example, a relative error of −.05 means that ÂN is lower than A by 5%. An
absolute error of −.05 is very large if A = .001 but very small if A = 1000. The
error (absolute or relative) is random because ÂN is random. An estimator has
“roughly 5% accuracy” if R2

n ∼ (.05)2.
Bad methods arise naturally through the curse of dimensionality. The simple

direct approach is probably bad in high dimensions. Direct methods are bad
methods for rare event problems. Consider a random process that models an
engineering system that “fails” with a small probability ε. If you estimate ε
using N independent simulations of the system, the RMSD error measure will
definitely be large if N < 1

ε . For ε = 10−6 (the failure probability of an internet
switch), you must do at least 106 simulations to have any relative accuracy
in your estimate of ε. Much of this course is devoted to understanding and
overcoming these difficulties. This week, however, there is only a contrived
example, which is Exercise 3.

3 Generating random variables

Monte Carlo calculations rely on random numbers from specified probability dis-
tributions. Monte Carlo sampling is the process of generating multi-component
random variables from single component random variables with simple distribu-
tions. All of these are generated from sequences of independent random numbers
Uk. A random number generator is an algorithm that creates the sequence Uk. A
sampler is an algorithm that creates random variables from other distributions
from a sequence Uk.

8

Subsection 3.1 describes random number and the random number generator
in Python that will be used in this course. Especially if you’re a math person
used to Matlab or C++, please pay attention to subsubsection 3.1.1 on how it
is implemented in Python. The "=" sign in Python is easy to understand, but
different from Matlab. Using it wrong, which every new Python programmer
I’ve met has done, will make your program go wrong in ways that will be hard
to figure out.

Subsection 3.2 is a taste of the problem of sampling, which is the problem of
making a random variable you’re interested in using the sequence Uk. The rest
of the course will have many more sophisticated sampling techniques, many of
which use the function/mapping method here.

3.1 Random number generators

A perfect random number generator would generate a sequence of independent
random variables Uk, all uniformly distributed in [0, 1]. Computer random
number generators are really pseudo random number generators, because the
numbers they make are not random. They are made by the pseudo random
number generator algorithm. Experts can devise tests that computer-produced
pseudo-random numbers will fail. These tests look for subtle correlations in
the Uk. However, in 2020, good random number generators in Python, C++,
Matlab, etc., are good enough for any Monte Carlo method I am aware of.

A random number generator is characterized by a data structure and two
algorithms that act on it. Here is a description in pseudo-code. Pseudo-code
is a way to explain algorithms without giving programming language specific
details. The data structure is the state, which I call S, is a small collection of
integer variables. The update function, which I call Next(S), returns a new state
computed from the old one. You get a sequence of states by applying the Next
function, Sk+1 = Next(Sk). The “Next” function is a simple algorithm that
characterizes the random number generator. The output function, which I call
Out(S), returns a floating point number in the interval [0, 1]. You get a pseudo-
random sequence by applying “Out” to a sequence of states: Uk = Out(Sk).
Different random number generators have different data structures and update
and output functions. A perfect random number generator makes a sequence Uk
that is an i.i.d. sequence uniformly distributed in [0, 1]. Modern random number
generators make numbers that are almost impossible to distinguish from true
random numbers.

Obsolete congruenial random number generators illustrate how random num-
ber generators work, but modern random number generators work better. There
are three large integers, typically prime, p, q, and r. The state update function
is

Sk+1 = Next(Sk) = qSk + r (mod p) . (12)

The output function is

Uk = Out(Sk) =
1

p
Sk .

9

In practice, p, q, and r were 128 bit integers, which means they were integers
close to, but slightly smaller than, 2128 − 1. These, and the 128 bit state
Sk, were represented by four 32 but computer integers. The random number
generator program had routines for doing 128 bit arithmetic when the integers
were represented by four 32 bit integers. The output was a 64 but floating point
number. With 128 bits of S and 64 bits of U , you could get any floating 64 bit
floating point number in the interval [0, 1].

A random number generator produce numbers that are uniformly distributed
and independent. It is not hard to see that a congruential random number gen-
erator produces numbers that are uniformly distributed. Good congruential
generators give numbers that are “random enough” for most Monte Carlo ap-
plications, but all of them have correlations that are easy to find if you know
how to look for them. To see why Sk could be sort of independent from Sk+1,
ask what happens from Sk and S′k = Sk + 1. These have Uk and U ′k that are
either are represented by exactly the same 64 bit floating point number, or one
that is within normal roundoff of it. But, at the next step, if you ignore the
reduction mod p, then S′k+1−Sk+1 = q. Then U ′k+1−Uk+1 = q

p is on the order
of 1, if q is on the order of p. If Sk + 2 and Sk + 3, etc., also give identical or
nearly identical output numbers, then at the next step, you have Uk+1 + 2 qp , or

Uk+1 + 3 qp , etc. The numbers q
p , 2 qp , 3 qp , etc., are nearly uniformly distributed

in the interval [0, 1] (reducing mod 1). This is some idea why Uk+1 is uniformly
distributed, even conditioned on knowing Uk.

3.1.1 Python 3 details – very important

We will use the random number generator that comes with version 1.19 of
Numpy. If you have an earlier version of Numpy, as I did when I started to
prepare these notes, you must upgrade to the latest Numpy. You may have to
know more about Python than the average math grad student to get the random
number generator to work for you. With the right understanding, it will be easy
and seem natural. Python was designed by computer scientists specializing in
programming languages. The language has some simple principles that are
different from C++ or Matlab. Understanding these principles will help you
avoid some Python mistakes (and painful weeks of debugging) most math people
make.

Object name binding

A Python module is a file that contains a sequence of Python commands. When
you “run” a module, the Python interpreter executes the commands one by
one. The interpreter executes a commend in the current Python environment.
It takes information from the environment. Executing the command usually
changes the environment in some way. As a first approximation, the environ-
ment consists of a list of active names and a list of objects. Each name is bound
to an object, but there can be more than one name bound to a given object.

10

A simple assignment command has the form name = expression. To execute
the command, the interpreter first evaluates the expression. The “value” of the
expression is an object. This object either is created, or is found in the list of
active objects. The interpreter then binds the name on the left to that object.
If the name already “exists” (is in the list of active names), then that name is
bound to the object. The object it was bound to before is forgotten. If the name
is not in the environment, it is added to the list of active names. For example,
when the interpreter executes the command x = 2+3, it first evaluates the right
hand side. The value is an object which consists of an integer with the value
5. The interpreter then binds the name "x" to that object (an integer with the
value 5). Suppose the next command is y = x. When the interpreter evaluates
the right side, the value will be the object consisting of the integer 5. In this
case, the value is the object that the name "x" is bound to, which is the integer
5. It then binds the name "y" to this object. The result is that names "x" and
"y" are bound to the same object.

An assignment command, not the simple ones described above, can have the
effect of modifying an object, rather than forgetting one. For example

import numpy as np

.....

x = np.zeros(3)

x[0] = 1.

The command x = np.zeros(3) is a simple command. The interpreter first
evaluates the expression on the right. This produces an object, which is a
numpy array with three elements. The interpreter then binds the name "x" to
that numpy array object. The next command modifies this object by changing
one of its values. The name "x" continues to be bound to that object.

Figure 1 illustrates some features of evaluation and name binding, first some
of the code, then the output. Line 17 creates the name "x" and binds this
to the object with is a numpy array consisting of three zeros. Line 18 creates
a different name, "z" and binds it to a different object, which happens to be
identical to one "x" is bound to. Line 18 creates the name "y" and binds it to
the object "x" is bound to. In Python, the logical operator is as in (A is B)

returns True if the the names "A" and "B" are bound to the same object. The
logical operator == returns True if the expressions A and B have the same value,
sort of. The expression (x is y) evaluates to True because names "x" and
"y" are bound to the same object. The expression (x is z) evaluates to False

because "z" is bound to a different (but identical) object. When you apply the
equality test operator (x == z), Python applies the operation “elementwise”
to the three entries. The output shows that these are all equal. Lines 26 and 27
illustrate the fact that two objects can be equal in the sense of == even though
they are not the same object in the sense of is.

It is important to remember the difference between binding and copying. As
was said above, but needs to be emphasized, the command of line 19 does not
create a new object. Instead, it binds the name "y" to the existing object. The
assignment command of line 28 modifies the object bound to "x by changing the

11

first entry to π = 3.14159 · · · . The numpy name np.pi is bound to this value.
Since the name "y" is bound to the same object, this has the effect of changing
y[0] to π. Changing the value of y[0] is a side effect of x[0] = np.pi. A
side effect of a command is a consequence of the command that is not explicitly
directed by the command itself. The side effect of line 28 is that y[0] changes
from 0 to π.

Line 32 shows how to make a copy of a numpy array. The expression x.copy()

has the form [name].[action](). Line 30 does also. See below for a little
explanation of this. Executing this command creates a numpy array identical to
the one bound to "x" and binds "u" to the new one. The "u" object created
is identical to the "x" object, but modifying x does not modify u (line 34, sets
the second entry of x to e), and modifying u does not modify x (line 35). The
last two lines of output verify this. You can download the module here

ObjectBinding.py

12

https://www.math.nyu.edu/faculty/goodman/teaching/MonteCarlo20/index.html/week1/ObjectBinding.py

Figure 1: Names and binding. From the module ObjectBinding.py

Classes and the numpy random number generator

The numpy random number generator is implemented using the Python class
mechanism. Very roughly speaking, a data type is a kind of Python object
(integer, float, character string, ...). Some data types are built in, which means
defined by the Python language itself. Basic types like int, float, and string

are built in. A class can be thought of as a data type defined by Python code,
either in your code or in the code you import, including numpy and matplotlib.
If classname is the name of a class, then classname can be the type of an
object.

A constructor is one way to get an object of type classname. Another way
is to call a method that returns an object of that class. The constructor is a
Python method that does what it takes to set up an object of type classname.

13

A command x = [classname]([arguments]) uses the data in [arguments] to
create an object of type classname. The name "x" is bound to that object.

In the following commands, the classes named PCG64 and Generator have
already been defined.

state = PCG64(1234)

rg = Generator(state)

The second command calls the constructor method of the Generator class to
create an object of type Generator. The name "rg" is bound to that object.
The constructor has one argument, an object of type PCG64, which is a class
that represents the state of the random number generator. The constructor
for the PCG64 class takes an integer argument, which is 1234 in this case. The
constructor for PCG64 takes the integer as a seed to construct a state. The state

SamplerDemo.py

14

https://www.math.nyu.edu/faculty/goodman/teaching/MonteCarlo20/index.html/week1/SampelrDemo.py

Figure 2: The code from SamplerDemo.py

15

Figure 3: Output from SamplerDemo.py

3.2 Making samples using functions

If U is a random variable with some distribution, and X = f(U) then X also
is a random variable. Let us suppose that f is monotone, so that if x = f(u),
then u is unique. Let ρ(x) be the PDF of X. Then, if x = f(u) and 0 ≤ u ≤ 1,
then

ρ(x) =
1

f ′(u)
. (13)

Here is an informal derivation. The PDF of X is defined by

ρ(x)dx = Pr(x ≤ X ≤ x+ dx) .

If X = f(U) and x = f(u), then dx = f ′(u)du. Since U is uniformly distributed,
Pr(u ≤ U ≤ u+ du) = du. Therefore (13) follows from

ρ(x)dx = Pr(x ≤ X ≤ x+ dx)

ρ(x)f ′(u)du = Pr(u ≤ U ≤ u+ du)

ρ(x)f ′(u)du = du .

The formula (13) may seem odd at first. You can get more confidence in
the formula by checking that it makes dimensional sense. There is more on
dimensions and units next week. Here, we simply ask why the the probability
density ρ(x) is small when f ′(u) is large. If f ′(u) is large then a small interval

16

in u space is mapped to a large interval in x space. This means the probability
in a u interval is spread to a large x interval, which makes any particular x
interval less likely. You can look back at the derivation and see that it is a
formal expression of this reasoning.

The exponential random variable is produced using the log function. An
exponential random variable S with arrival rate parameter λ has PDF

ρ(s) = λe−λs . (14)

Subsection 3.4 explains why λ is called a rate. You can generate an exponential
random variable from a uniform random variable U with S = f(U) and

f(u) =
−1

λ
log(U) . (15)

The log is defined because U > 0. The log is negative because U < 1. This
makes S positive. The time S is smaller (generally speaking, since it’s random)
when the arrival rate λ is larger, which explains λ in the denominator.

3.3 Simulation

A random variable may be the result of a random process. A random process
may have a random state Xt that “evolves” in time as t increases according
to some stochastic model. Subsection 3.4 gives an example. The state Xt as
a function of time is the sample path. We write X., or X, or X[0,T] to refer
to the whole path rather than the state at a specific time. The notation X[0,T]

indicates that the path is simulated up to a specific “final time” T . It is common
that a path is simulated until some stopping condition is satisfied.

The quantity of interest (abbreviated QOI), V , is a single number that de-
pends on the path in some way. [A number that is a function of a random object
is a statistic.] We express this using notations such as V (X.) or V = F (X[0,T]).
The random variable V has some probability distribution, but this distribution
is usually too complicated for there to be a simple formula for the PDF.

The Monte Carlo problem is to estimate E[V]. We do this by creating
N independent samples of X, which we call X1, . . . , XN . The corresponding
samples of the V distribution are Vk = V (Xk). This is one situation in which
we generate independent samples of a random variable whose PDF is not known.
The distribution of V is determined by the random process, not by explicitly
specifying a PDF.

2D path example

As an example, consider a simplified model of a polymer in two dimensions. A
polymer is a large molecule that consists of a large number of identical parts
called monomers. In a chain polymer, the monomers are connected to form
a long chain – each monomer (except the first and last) connected to one in
front and one behind. We model the monomers as points, with monomer k at

17

location xk. We suppose the distance between neighboring monomers is fixed,
so |xk+1 − xk| = r for all k. The line segment from xk to xk+1 is a “bond”
The polymer is “infinitely floppy” or “infinitely flesible” if the angles between
successive bonds is uniformly distributed. We assume that the polymer has l
bonds and l+1 monomers. The interaction potential for two particles a distance
D apart is φ(D). The total interaction potential is the sum of the interaction
potential between all pairs, which is

V =
∑
j 6=k

φ (|xj − xk|) =

l−1∑
j=0

l∑
k=j+1

φ (|xj − xk|) .

This quantity depends only on the relative positions of monomers, so we may
assume that x0 = 0.

A 2D polymer with uniformly distributed bond angles has xk = (x1,k, x2,k)
and

(x1,k+1, x2,k+1) = (x1,k, x2,k) + r(cos(θk), sin(θk)) ,

θk ∈ [0, 2π] uniformly distributed and independent .

Note that having the bond angle uniformly distributed with respect to the
x−axis (the formula above) is the same as having the bond angle from xk
to xk+1 uniformly distributed with respect to the bond from xk−1 to xk. We
choose the interaction potential to be

φ(D) = e−D .

The exponential decay is motivated by the Debye Hückel potential (see Wikipedia).
The model has been “nondimensionalized” by setting the Debye Hückel length
to 1 and having r be the ratio between the true bond length and the Debye
Hückel length. [More on units and non-dimensioqnalized models is coming next
week.]

The mathematical model that we apply Monte Carlo to is that X is a path of
l + 1 monomers with uniformly distributed angles and equal lengths. We write
X for such a random chain polymer in 2D. The quantity of interest is the total
interaction potential V (X). We generate an independent sample of the random
variable V by generating an independent random path (monomer) X and then
evaluating V (X). Each path is a “simulation” of the monomer. We estimate
A = E[V] by generating N independent paths and evaluating V for each path.
We then take the sample average and make a one standard deviation error bar.

The script MonteCarloEstimation.py does this. The function defined after
def path(X, r, l, rg): creates a random path. The arguments are space
for the path X (see below), the length ratio r, the number of bonds l, and the
random number generator rg. The function defined in Vcalc(X): evaluates
and returns the quantity of interest V for the X given. The main program comes
at the end. It instantiates a random number generator rg with a specified seed.
It then does direct Monte Carlo estimation of A for the l values given in the

18

list. Figure 4 illustrates the steps. For each l in the list of runs it generates N
independent paths with l bonds, evaluates V , and computes teh sample mean
(line 95 and 98) and the sample variance (line 95 and 99). Line 100 is the one
standard deviation error bar.

Figure 4: Code fragment from MonteCarloEstimation.py with the estimation
loop.

When you download and run the code, you will see right away that Monte
Carlo calculations even with modest numbers (N = 104, l = 80) can be very
slow. In future weeks we will see how to get better performance out of Python.
This allows bigger numbers, but not very much bigger. Monte Carlo like this
takes a lot of compute time.

Figure 5 has the output from two runs with different seeds. These are
essentially two independent samples of random Monte Carlo output. The last
column has output in the standard format. For l = 2, the two estimates of V
are .4359 and .4435. These differ by .006. According to basic probability, the
standard deviation of the difference between two independent estimates is

√
2·σ.

We write Z for the difference between the estimates, measured in units of this
standard deviation. In this case, it’s Z = (.4435 − .4359)/(

√
2 · .00223) = 2.2.

The difference is a little more than two standard deviations, which is big but not
outrageous. For l = 10, the same calculation gives Z = −.43, which is less than
one standard deviation. We don’t have a theoretical way to check the estimates
of the mean total interaction potential A, but the error bars seem to be about
right.

19

Figure 5: Output from two runs of MonteCarloEstimation.py.

Coding requirements and standards

I expect the code you submit for the homework to follow standards that are
illustrated in MonteCarloEstimation.py and in the output. It will take you
a few minutes of coding time, but the result will be better code. Good code
with easy to read and informative output will make you a more productive
computational scientist. Studies show that good programmers (people who
create code quickly that works and is easy for others to work with) rigidly
follow a collection of coding rules. Different good programmers have different
rigid coding styles. [Do a web search on “python coding style” to see good
programmers arguing about which rigid rules are best.] When one coder works
on code written by another, he or she usually tries to follow the coding style of
the given code.

• Comments at the top of each file saying who (or which people) write the
code, how to get in touch with them, and what it’s for.

• Clear separation between different function definitions

• A docstring for each function describing the input and output in detail.

• Easy to identify variable names. In scientific computing code, they can
match the names in the writeup.

• “White space” so the code is easy to read, including (when it’s easy)
aligning = signs. Aligning successive lines of code helps the reader, and it
helps the coder spot typos.

• Collecting definitions of parameters together in one place. Here, the ran-
dom number generator is instantiated in lines 69 to 72 and the physical
parameters are in lines 74 to 76.

20

• Formatted floating point output is required. Python has more than one
way to do this, but I use the mechanism of lines 78 to 81. Line 78 is
a character string with format instructions. Line 79 says which floating
point variables are to be formatted into the string. Lines 80 and 81 print
the string with numbers formatted into it.

• Put the variables from the run into the output, as lines 80 and 81 do.

• Print output in organized tables with table headings. The heading is line
83. The output rows in the table are created in lines 101 to 103 in the
same formatting process. The spacing in lines 83 and 101 are found by
trial and error so the numbers in Figure 5 line up.

• Every aspect of the code is commented with comments that are as helpful
as possible. An example of an unhelpful comment is

s = x + y # set s to be the sum of x and y

3.4 Simulating a Poisson process

A Poisson arrival process is a sequence of positive times T1 < T2 < · · · . The
probability of an arrival in a fixed small time interval [t, t+ dt] is λdt.

Pr(arrival in [t, t+ dt]) = λdt . (16)

This λ is the arrival rate. Arrivals in disjoint time intervals are independent.
The inter-arrival times are Sk > 0. These are defined by Tk = Tk−1 + Sk. This
formula makes sense for k = 1, 2, . . . if we artificially define T0 = 0. In that case,
T1 = S1, and T2 = S1+S2, etc. The inter-arrival times for a Poisson process are
independent exponential random variables with rate parameter λ. This means
they have PDF ρ(s) = λe−λs. You can simulate a Poisson process by generating
independent exponential inter-arrival times Sk using (15) and then adding them
to generate the Tk.

The Poisson process is a model of the situation where there are many
“agents” who decide independently and randomly when to do something. The
Poisson process models the situation where there are many agents and each
agent is unlikely to do it. The product of a large number of agents and small
“do it” probability leads to a regular stream of events, which are the Poisson
arrivals. One example is a call center. Suppose the agents are one million cus-
tomers who use a certain software package. At any moment, a customer may
decide to call customer support. This is rare for each specific customer. But
many customers generate a steady stream of calls. The calls come at random
times, which model as Poisson arrivals.

The probability model (16) leads to a formula for the PDF of the inter-arrival
times. Let P (s) the the cumulative distribution for S and ρ(s) the PDF. These
are related by

P (s) =

∫ s

0

ρ(s′) ds′ , P ′(s) = ρ(s) , P (0) = 0 .

21

The model (16) leads to a differential equation for P or ρ, which leads to the
formula (14). The derivation uses Bayes’ rule for conditional probability and
the following observation: If S > s, then S < s + ds if there is an arrival in
[s, s+ ds]. This is a conditional probability. With 16, this leads to

Pr(S < s+ ds|S > s) = −λds .

The unconditional probability is

Pr(s ≤ S ≤ s+ ds) = ρ(s)ds .

The Bayes’ rule calculation from these facts is

λds = Pr(S < s+ ds|S > s)

=
Pr(S < s+ ds and S > s)

Pr(S > s)

=
Pr(s ≤ S ≤ s+ ds)

1− Pr(S < s)

=
ρ(s)ds

1− P (s)

λ(1− P (s)) = P ′(s) .

The last differential equation, and the initial condition p(0) = 0 leads to P (s) =
1− e−λs and then to (14).

4 Assignment 1, due September 16

Always check the class message board on the NYU Classes site from home.nyu.edu before doing

any work on the assignment.

Corrections: Exercise 2 simplified. Exercise 5 corrected.

1. The Stirling approximation (1) is not “accurate” in the sense that

Rm =
mme−m

m!

does not go to 1 as m→∞. A version of Stirling’s formula that is accurate
in this sense includes the prefactor,

√
2πm. The assignment for week 2

will explain how to find this prefactor. The more accurate formula is

m! ≈
√

2πmmme−m .

This has the property that Rm → 1 as m → ∞, if you use the more
accurate approximation in the numerator. The prefactor shows that the
Stirling’s formula we used in (1) is wrong by a factor that goes to infinity

22

as m→∞. For example, for m = 10, the formula (1) is off by a factor of
about

√
20π ≈

√
20 · 3.14 ≈

√
63 ≈ 8.

Show that this does not change the practical conclusion in Section 2.
Specifically, suppose we have enough computer time or storage for a billion
(109 in the US meaning of “billion”) Taylor series terms, and we will take
n = d. Let nmax be the largest number of terms allowed, according to the
simple approximation (3). The approximation 210 ≈ 103 suggests that
nmax ≈ 15. If you have 15 variables then you can use Taylor series up
to order 15 and stay within the “one giga-term” limit (“giga” means 109

everywhere). How much does this conclusion change if you use the more
accurate Stirling approximation and do the algebra more correctly? How
different is the actual nmax from 15?

2. It is more common that the Taylor series degree n is fixed while the number
of variables is much larger. Consider the situation where n = 7 (Taylor
series up to order 7) and d much larger. The first factor on the right of (2)
is approximately (d/7)7. Show that the second factor is about en. What
is dmax if you are constrained to one giga-term? You can be off by a small
number, but within, say, 20%.

3. Define

A =

∫ 1

0

eλu du .

Consider the estimator that uses N independent uniformly distributed
random variables Uk

ÂN =
1

N

N∑
k=1

eλUk .

(a) Show that this estimator is unbiased.

(b) Show that it is “correct” in the sense that RN → 0 as N →∞.

(c) Show that it is bad in the sense of Subsection 2.3 when λ is large.
Show by direct calculation that R2

N ≈ λ
2N when λ is large.

(d) For λ = 50, approximately what N do you need to estimate A to
about 1% accuracy (1% error bar)?

4. The “standard, centered” Cauchy probability density is

ρ(x) =
1

π

1

x2 + 1
. (17)

You can make a more general distribution by moving the “center” to
x0 6= 0, as

ρ(x) =
1

π

1

(x− x0)2 + 1
.

23

You can change the “width” by replacing x with x/L, as

ρ(x) =
1

πL

1(
x−x0

L

)
)2 + 1

. (18)

We will see (Week 2) that a Cauchy random variable does not have a well
defined mean (hence “center” = x0 instead of “mean” = µ). The variance
also is infinite, hence “width” instead of “standard deviation”.

Suppose θ is uniformly distributed in [0, π]. Consider the mapping

X =
cos(θ)

sin(θ)
.

Show that X has the standard centered Cauchy distribution. Explain how
to make a random variable with the general Cauchy distribution (18)

5. Suppose T is a random positive time and

Pr(T ≤ t+ dt | T > t) = µt dt .

Find the PDF of T .

6. (Monte Carlo computation). Here is a simple of an “integrate and fire”
neuron. In this model, a nerve cell “fires” (sends off a chemical/electrical
pulse) when its cell body reaches a certain threshold potential (also called
voltage, but electric potential does not have to be measured in volts) F .
Potential (charged ions, actually) leaks out of the cell body with leak-
age coefficient r. This means that without stimulation the potential Xt

satisfies d
dtXt = −rXt and Xt+s = e−rsXt. The cell body (in this sim-

plified model) also receives stimulation from other nerve cells in the form
of arriving pulses of strength 1. If Tk is the arrival time of a pulse, then
XTk+0 = Xtk−0. The pulse arrivals form a Poisson process with arrival
rate λ. If Xtk+0 ≥ F , then the cell fires and the potential resets to zero.
Feel free to do some web searching to learn more about synapses, den-
drites, firing, neurotransmitters and so on.

Here is a different way to describe the same model. In a small time
increment dt, there is an arrival with probability λdt. If an arrival happens,
the cell body potential is incremented by 1, so Xt+dt = Xt + 1. If there
is no arrival, the leakage lowers the potential by a deterministic amount
rXtdt. If Xt > F , then the neuron “fires” and the potential resets to zero:

Xt+dt =

 Xt + 1 with probability λdt
(1− rdt)Xt with probability 1− λdt
0 if Xt > F .

Subsection 3.4 explains the equivalence between these descriptions.

Suppose X0 = 0 and τ is the first firing time. Write a method that makes
an independent sample path from this process. The method should take

24

F , λ, r, and the random number generator as arguments. It should return
two quantities of interest, τ , and Nτ , the number of Poisson arrivals up
to time τ . Use this method to generate enough independent samples of τ
to estimate E[τ] and E[Nτ] for various values of the parameters. Make a
table with parameter values, estimated expected values for the quantities
of interest, and one standard deviation error bars. If you choose uninter-
esting parameter values, Nτ will nearly always be 1 (or zero, depending
on whether you count the last arrival). If you choose impractical values,
then Nτ will be so large that the simulation is impractical. Experiment
with your code to see what parameter values are interesting and practical
(or uninteresting or impractical).

25

	About the course
	Introduction to Monte Carlo
	Curse of dimensionaltiy
	Sample averages and error bars
	Bad algorithms

	Generating random variables
	Random number generators
	Python 3 details – very important

	Making samples using functions
	Simulation
	Simulating a Poisson process

	Assignment 1, due September 16

