
A stochastic differential equation is a particular type of noisy dynamical
system. Applications call for generating SDE sample paths subject to a variety
of constraints.

1 Multivariate normal

Let X ∈ Rn be an n component normal with covariance matrix C. Choose an
orthonormal family of vectors vk and eigenvalues λk so that Cvk = λkvk. The
λk are the principle components of X (or of C) and the vk the corresponding
principle components (the terminology differs slightly from place to place). The
random numbers Yk = vtkX are independent mean zero Gaussians with mean
zero and variance λj . Said another way, if V is the orthogonal matrix whose
columns are the vk, then Y = V tX is a multivariate normal with mean zero and
covariance Λ, the diagonal matrix with λk in the (k, k) position. The Yk also
may be called principle components, or possibly components in the principle
directions. To summarize, the eigenvalue/eigenvector decomposition of C is the
principle component analysis of X. When using PCE, we usually order the
principle values from largest to smallest: λk ≥ λk+1 for all k.

On the other hand, suppose we know the vk and λk. We can construct a
sample Yk as Yk = σkZk, where σk =

√
λk and the Zk are independent standard

normals. Therefore, the formula X =
∑n
k=1 σkZk provides a sample of X from

independent standard normals. This kind of PCA is helpful in many ways in
Monte Carlo practice. If we want to know A = E[f(X)], it is likely that the
larger principle components are more important than the smaller ones. For
example, the quantity B =

∫
f(σ1v1z1)e−z

2
1/2dz/

√
2π may be a helpful control

variate for evaluating A.

2 Brownian motion

A standard univariate Brownian motion path is a continuous random function
X(t) with X(0) = 0 and increments, ∆Xk = X(tk+1) − X(tk) independent
Gaussian random variables with mean zero and variance tk+1 − tk. Here tk
is any sequence of positive numbers with tk+1 > tk. Many problems involve
expected values of functions of Brownian motion and the intuitions gained by
studying Brownian motion help design methods for related problems.

We start with the PCA of standard Brownian motion. Since Brownian
motion is infinite dimensional, we start with finite dimensional approximations
then get the PCA of Brownian motion itself as a limit. Suppose we fix a T > 0.
For any integer n > 0, we divide the interval [0, T ] into n equal subintervals
using the notation h = T/n and tk = kh. The multivariate normal Xh ∈ Rn
has components Xh

k = X(tk), for 1 ≤ k ≤ n. We showed before that the
covariance matrix for Xh has H = C−1 that is tri-diagonal of the form .... .
Clearly the eigenvalues of C are the inverses of the eigenvalues of H while the
eigenvectors are the same. It happens (we will get more insight into this later)
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that the eigenvectors of H have the form vhk,j = sin(ωhk t
h
j ), where ... . If we take

the limit h → 0 and n → ∞ with T = nh fixed, the sequence of eigenvalues of
H converges to µk = (k + 1)2π2/T 2, as we verify by direct computation.

The PCA representation of a Brownian motion path is

X(t) =
T

π

∞∑
k=1

Zk

k + 1
2

sin
(
k + 1

2 )π
T

t

)
. (1)

This representation is valid only for t in the range 0 ≤ t ≤ T . Moreover, it
presents serious mathematical challenges. It is not straightforward to see that
the sum converges. Indeed, the Zk and the sine factors are of the order of unity,
so the terms in the sum seem to have the order of magnitude 1/k, which would
not by itself lead to a convergent sum. The series does converge in the L2 sense
because

E

[ ∞∑
k=1

Z2
k(

k + 1
2

)2
]

=
∞∑
k=1

1(
k + 1

2

)2 < ∞ .

However, this kind of convergence does not even imply that X(t) is continuous.
Many discontinuous are represented by L2 convergence Fourier series. If we wish
to generate a Brownian motion path using (1), we can use the FFT to calculate
the sums on the right efficiently.

The Brownian Bridge construction is another good way to generate Brownian
motion paths. For this, we consider a diadic collection of times. On level k, the
interval [0, T ] is divided into 2k equal subintervals. At the top is level zero with
a single interval [0, T ] whose endpoints may be written t0,0 = 0 and t0,1 = T .
At the next level [0, T ] is broken into two halves bounded by the points t1,0 = 0,
t1,1 = T/2, and t1,2 = T . The diadic points at level k are tk,j = j2−kT , for
integers j in the range 0 ≤ j ≤ 2k.

The construction itself is an algorithm that generates values for Xk,j =
X(tk,j) recursively proceeding from k to k + 1. At the top level we already
have X0,0 = X(0) = 0 and we need X0,1 = X(T ). But X(T ) is a mean zero
Gaussian with variance T , so we can take X0,1 =

√
TZ0,1, where Z0l,1 is a

standard normal. Things get interesting at the next level. From the properties
of Brownian motion, we know that the values (X(t1,1), X(t1,2)) = (X1,1, X1,2) is
a bivariate normal. Therefore, conditional on the value of X1,2, which already is
known from the previous level, the value of X1,1 is a univariate normal. Simple
calculations show that E [X1,1 | X1,2] = 1

2X1,2, and var [X1,1 | X1,2] = 1
4T . The

first result is very natural, that the expected value of the midpoint value should
be the average of the two end values. The second result may be surprising,
since the variance of X1,1 without information about X1,2 is T/2 instead of
T/4. Specifying both endpoint values constrains X1,1 to have a smaller variance.
With this information the sampling can be done using X1,1 = 1

2X0,1 +
√
t

2 Z1,1.
As usual, Z1,1 is a standard normal independent of all others.

The step of going from level k− 1 to level k is clear. We already have values
Xk,2j = Xk−1,j from the previous levels. We need to generate values for the new
points tk,2j+1. The Markov property (which is the main thing that makes this
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construction work) implies that the conditional distribution of Xk,2j+1 given all
the values on level k − 1 is the same as the distribution given the level k − 1
endpoints Xk,2j = Xk−1,j , and Xk,2j+2 = Xk−1,j+1. As above, the conditional
expectation of Xk,2j+1 is 1

2 (Xk−1,j +Xk−1,j+1). Let ∆tk = 2−kT be the length
of the diadic intervals at level k. The conditional variance of Xk,2j+1 is ∆tk/2
(which again is half the conditional variance if only the left value Xk,2j were
specified). Therefore, the sampling may be done by

Xk−2j+1 =
1
2

(Xk−1,j +Xk−1,j+1) +

√
∆tk

2
Zk,2j+1 .

One use of this Brownian bridge construction is similar to the PCA con-
struction, to have a way to separate random variables that have a large impact
on X from others that have a smaller impact.

3 The Ornstein Uhlenbeck Process

The Ornstein Uhlenbeck process is a simple modification of Brownian motion
to add mean reversion. Starting here, we refer to the proces of interest as X(t)
while W (t) will be Brownian motion. The general Ornstein Uhlenbeck process
satisfies the SDE

dX = −µXdt+ σdW . (2)

This means that we can write

X(T ) = e−µTX(0) + σ

∫ T

0

e−µ(T−t)dW (t) . (3)

We see from this that X is a linear transformation of the Gaussian W so it is
Gaussian. This is contingent on X(0) being Gaussian if it is random. From this
we can calculate that X(T ) is a gaussian with mean e−µTX(0), and variance

σ2

∫ T

0

e−2µ(T−t)dt =
σ2

2µ
(
1− e2µT

)
→ σ2

2µ
as T →∞ . (4)

As T →∞, the distribution of X(T ) converges to a gaussian that is independent
of the initial condition (if the mean and variance converge and if it’s Gaussian,
the distribution converges).

Much Monte Carlo depends on time dependent random processes like this so
we analyze this in more detail, focusing on features that have analogues in many
Monte Carlo applications. Suppose u(x, t) is the probability density function
for X(t). This satisfies the Kolmogorov forward equation (other names include,
but are not limited to, the forward equation, the Fokker Planck equation, and
the Chapman Kolmogorov equation)

∂tu =
σ2

2
∂2
xu+ µ∂x (xu) . (5)
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We write this as

∂tu = L∗u , where L∗u =
σ2

2
∂2
xu+ µ∂x (xu) . (6)

It is traditional to call the operator in (6) L∗ so that it’s adjoint that appears
in the backward equation can be called L.

If the distribution of X(t) has a limit as t → ∞, then we expect u(x, t) →
u0(x) as t→∞. From the equation (5), this suggests that u0 is a solution with
L∗u0 = 0. This gives

σ2

2
∂2
xu+ µ∂x (xu) = 0 ,

If u0 → 0 as x→∞ together with its derivatives, this may be integrated to

σ2

2
∂xu0 + µxu0 = 0 .

The solution takes the form u0(x) = Ce−x
2/2ρ, with ρ = σ2/2µ.

We are interested in the rate of convergence u(·, t) → u0,which depends on
the other eigenvalues of the operator L∗. That is, we seek functions

L∗uk =
σ2

2
∂2
xuk(x) + µ∂x (xuk) = −λkuk . (7)

It turns out that the solutions have the form uk(x) = ∂kxu0. We verify this by
induction on k, the case k = 0 having been done above. The trick for doing the
calculation is the “differentiation by parts” formula f∂xg = ∂x(fg)− (∂xf)g. If
f = ∂k−1

x u0 and g = x, the result is

x∂kxu0 = ∂x(x∂k−1
x u0)− ∂k−1

x u0 .

Therefore, using L∗uk−1 = −λk−1uk−1,

L∗uk = L∗∂xuk−1 =
σ2

2
∂2
x∂xuk−1 + µ∂x(x∂xuk−1)

= ∂x

(
σ2

2
∂2
xuk−1

)
+ ∂x ( µ∂x (xuk−1) ) − µ∂xuk−1

= ∂x (L∗uk−1)− µuk = − (λk−1 + µ)uk .

This shows that L∗uk = −λkuk with λk = λk−1 +µ. To conclude, the eigenval-
ues are 0 (the steady state), −µ, −2µ, etc. The corresponding eigenfunctions are
derivatives of Gaussians, which is to say, given by Hermite polynomials (more
on this below).

We use the above information to describe the behavior of the probability
density u(x, t). The solution of the evolution equation (5) is a linear combination
of eigenfunctions:

u(x, t) =
∞∑
k=0

ake
−kµtuk(x) , (8)
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where the coefficients are determined by the initial data u(x, 0). The k = 0 term
corresponds to the steady state solution a0u0(x). All the other terms decay with
various exponential rates. Slowest to decay is the k = 1 term, which will make
up most of the difference between u(x, t) and a0u0(x) for large t:

u(x, t)− a0u0(x) ≈ a1e
−µtu1(x) , for large t.

It may not be surprising that the exponential decay rate µ in (2) results in the
same exponential decay rate for u(x, t) − a0u0(x). What is new in the PDE
solution is the family of faster decay rates 2µ, 3µ, etc. We will find versions of
this phenomenon in any linear Gaussian process.

There are many practical applications for this kind of analysis. One con-
cerns dynamic sampling methods, also called Markov Chain Monte Carlo. A
complicated probability distribution may not have an efficient simple sampler,
but there may be a dynamic process, a Markov Chain, that preservers the dis-
tribution. Here, the dynamical process (2) preserves the Gaussian Ce−x

2/2ρ.
A major issue for dynamic samplers is the rate of convergence: How long do
you have to run the process before the distribution of X(t) closely approximates
u0(x). In this simple problem, the convergence time is of the order of 1/µ, which
also is the decay rate for the linear Gaussian process (2).

3.1 Hermite polynomials

Hermite polynomials have many applications in Monte Carlo and other parts of
applied probability. The nth Hermite polynomial, Hn(x), is defined by

Hn(x)e−x
2/2 = ±∂nx e−x

2/2 . (9)

The calculations ∂xe−x
2/2 = −xe−x2/2 and ∂2

xe
−x2/2 = (x2 − 1)e−x

2/2, and
∂3
xe
−x2/2 = (−x3−3x)e−x

2/2 imply that the first few polynomials are H0(x) = 1,
H1(x) = x, H2(x) = x2 − 1 and H3(x) = x3 − 3x. It is common to choose the
sign so that the leading term is positive and also to choose the sign itself always
to be positive (which would give H1(x) = −x). It is easy to verify by induction
that (9) defines polynomials of degree n with leading coefficient equal to ±1.

The Hn have the orthogonality property that∫ ∞
−∞

Hn(x)Hm(x)e−x
2/2dx = 0 , for n 6= m. (10)

We briefly indicate a proof of this by induction on m, assuming m < n, since a
better proof will come shortly. Actually, we prove (10) holds for a given m and
all n > m by induction on m. It clearly is true for m = 0, because then it just
is
∫
∂nx e

−x2/2dx = 0. Now assume it is true for m− 1 and try to prove it for m.
The rewrite of (9) as Hm(x) = ex

2/2∂mx e
−x2/2 puts (10) in the form∫ ∞

−∞
ex

2/2
(
∂nx e

−x2/2
)(

∂mx e
−x2/2

)
dx = 0
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Write ∂mx = ∂x∂
m−1
x and integrate by parts, and we get the two terms

−
∫ ∞
−∞

ex
2/2
(
∂n+1
x e−x

2/2
)(

∂m−1
x e−x

2/2
)
dx

−
∫ ∞
−∞

ex
2/2
(
x∂nx e

−x2/2
)(

∂m−1
x e−x

2/2
)
dx

The top term is zero by the induction hypothesis, which is why we used a more
complex induction hypothesis. We study the bottom term using something
similar to the differentiation by parts idea above, namely the formula x∂nxf =
∂nx (xf)− n∂n−1

x f . This implies that the bottom term is∫ ∞
−∞

ex
2/2∂nx

(
xe−x

2/2
)(

∂m−1
x e−x

2/2
)
dx

− n

∫ ∞
−∞

ex
2/2
(
∂n−1
x e−x

2/2
)(

∂m−1
x e−x

2/2
)
dx

The bottom term is zero because m− 1 < n− 1. The top term is zero because
xe−x

2/2 = −∂xe−x
2/2, so it is equal to

−
∫ ∞
−∞

ex
2/2
(
∂n+1
x e−x

2/2
)(

∂m−1
x e−x

2/2
)
dx = 0 ,

again by induction.
The orthogonality property of Hermite polynomials gives a different way to

find them. This is because of the fact that if p(x) is a polynomial of degree n
if and only if it may be written as a sum of Hermite polynomials of order not
more than n:

p(x) =
n∑

m=0

amHm(x) .

Therefore, (10) is true for a given n and all m < n if and only if∫
Hn(x)xme−x

2/2dx = 0

for all m < n. This is the same as saying that E[Hn(X)Xm] = 0 for all m < n,
where X is a standard normal random variable. We compute the first few
that way. Of course, H0(x) = 1. H1(x) is the polynomial of degree 1 that is
orthogonal to X0 = 1, which is to say H1(x) = x. Next, H2(x) is the quadratic
that is orthogonal to x and 1. We achieve E[H2(X)X] = 0 if H has the form
x2 − a. We achieve E[H2(X)X0] = E[H2(X)] = 0 if a = E[X2] = 1, i.e. if
H2(x) = x2 − 1. Finally, we want H3(x) = x3 − ax2 − bx − c to make H3

orthogonal to 1, x, and x2. The even powers are automatic if H3(x) is odd,
i.e. if H3(x) = x3 − bx. The remaining orthogonality condition E[H3(X)X] =
0 is E[X4] − bE[X2] = 0, which gives b = 3, as claimed above. It is the
orthogonality properties of Hermite polynomials that makes them handy, for
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example, in finding kernel functions for density estimation that satisfy several
moment conditions.

In the slightly more general situation of e−x
2/2ρ, we can define Hn(x, ρ) =

ex
2/2ρ∂nx e

−x2/2ρ. These polynomials are orthogonal in the natural sense∫ ∞
−∞

Hn(x, ρ)Hm(x, ρ)e−x
2/2ρdx = 0

for m 6= n. The proof is the same as above.

3.2 Adjoint eigenfunctions

The operator L∗ has an adjoint operator, L. The eigenvalues of L∗ and L are the
same but the eigenfunctions are different. The eigenfunctions of L are used to
determine the expansion coefficients ak in (8). Later we will find a way to derive
the adjoint eigenfunctions directly from the un using the principle of detailed
balance.

We explain the ideas in a finite dimensional setting. Suppose A is an n ×
n matrix. The right eigenvectors of A are vk with Avk = λkvk. The left
eigenvectors are row vectors uk with ukA = λkuk. This is the same as A∗u∗k =
λku

∗
k. That is, the left eigenvectors of A (when written as column vectors) are

the right eigenvectors of the adjoint (transpose) of A. The eigenvalues λk are the
same. The right and left eigenvectors satisfy biorthogonality relations ukvl = 0
if λk 6= λl.

For column vectors f and g, let (f, g) be the l2 inner product (f, g) = f∗g =∑n
k=1 fkgk. The adjoint of the n× n matrix A is defined by the property that

it should satisfy (A∗f, g) = (f,Ag) for all vectors f and g (check this). It is
possible to define other inner products. The one that will be useful for us is the
weighted l2 inner product 〈f, g〉w =

∑n
k=1 fkgkwk, where the wk are n positive

weights. Each weighted norm determines a different A∗ through the property
〈A∗f, g〉w = 〈f,Ag〉w for all f and g. In this case, the elements of A∗ are given
by A∗jk = Akjwk/wj (check this). The eigenvalues of A∗ are the same as the
eigenvalues of A (for example, because A∗ is similar to the transpose of A).
The eigenvectors satisfy the natural biorthogonality relation: If Avj = λjvj and
A∗uk = λkuk with λj 6= λk, then 〈uk, vj〉w = 0 (check this).

Back to L∗, we compute the adjoint in the L2 inner product (f, g) =∫∞
−∞ f(x)g(x)dx. This adjoint is defined by the requirement that for all func-

tions for which the computation makes sense: (L∗f, g) = (f, Lg). This is done
by integration by parts:

(L∗f, g) =
∫ ∞
−∞

(L∗f(x)) g(x)dx

=
∫ ∞
−∞

(
σ2

2
∂2
xf(x) + µ∂x (xf(x))

)
g(x)dx

=
∫ ∞
−∞

f(x)
(
σ2

2
∂2
xg(x)− µx∂xg(x)

)
dx
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=
∫ ∞
−∞

f(x) (Lg(x)) dx ,

with

Lg(x) =
σ2

2
∂2
xg(x)− µx∂xg(x) . (11)

Note that the second derivative terms in L∗ and L are the same while the first
derivative terms change sign. Also, the x is inside the differentiation in L∗ but
outside in L.

It turns out that the eigenfunctions of L are Hermite polynomials vk(x) =
Hk(x, ρ) = ex

2/2ρ∂kxe
−x2/2ρ. The biorthogonality relation (uj , vk) = 0 for

j 6= k is the orthogonality relation for Hermite polynomials, given that uj =
∂jxe
−x2/2ρ = Hj(x, ρ)e−x

2/2ρ. The eigenvalue relation Lvk = −kµvk can be ver-
ified by induction on k using the recurrence relation (one of many) vk+1(x) =
−x
ρ vx(x) + ∂xvk(x).

3.3 Detailed balance

So, the eigenfunctions of L∗ and those of L differ only by the exponential factor
e−x

2/2ρ. The L∗ eigenfunctions have it and the L eigenfunctions do not. This
suggests that is a relationship between L and L∗ that goes beyond one being
the adjoint of the other. This relation is that in a suitable inner product, the
adjoint of L is equal to L itself. This implies that L is similar to L∗ with the
similarity given by the weight used for the inner product. All of this is related
to the1 “principle” detailed balance.

There are many formulations of the detailed balance condition. One of them
(which is not the origin of the name) is that L should be self adjoint in the inner
product given by the steady state u0. If w(x) is a non negative weight function,
the weighted L2 inner product is

〈f, g〉w =
∫ ∞
−∞

f(x)g(x)w(x)dx .

L is self adjoint in this inner product if 〈Lf, g〉w = 〈f, Lg〉w, for all sufficiently
regular functions f and g. A direct calculation shows that the L in (11) is
self-adjoint in the weighted norm with w(x) = u0(x) = e−x

2/2ρ.
Detailed balance implies a relation between the eigenfunctions of L and those

of L∗. We can see this from a formula relating L to L∗ derived as follows:

〈f, Lg〉u0 =
∫ ∞
−∞

f(x)
(
Lg(x)

)
u0(x)dx

=
∫ ∞
−∞

(
L∗
(
u0f

)
(x)
)
g(x)dx

=
∫ ∞
−∞

(
1

u0(x)
L∗
(
u0f

)
(x)
)
g(x)u0(x)dx

1The principle of detailed balance is that certain physical processes satisfy detailed balance.
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〈f, Lg〉u0 = 〈 1
u0
L∗
(
u0f

)
, g 〉u0 .

This, together with the detailed balance condition 〈f, Lg〉u0 = 〈Lf, g〉u0 , implies
(because it holds for every g) that

u0Lf = L∗
(
u0f

)
. (12)

Applying this with f = vj and Lvj = λjvj shows that uj = u0vj satisfies

L∗uj = L∗u0vj = u0Lvj = u0λjvj = λjuj ,

which is to say that uj is an eigenfunction of L∗ with eigenvalue λj . This is the
eigenfunction relation we found above.

The detailed balance condition has a reformulation in terms of transition
probabilities. The transition probability density is the probability density for
X(t) given that X(0) = x0. We write this as u(x0, x, t), the probability (density)
of going from x0 to x in time t. From (3) and (4), we see that the conditional
distribution of X(t) is that of a Gaussian with mean x0e

−µt and variance ρ(t) =
σ2

2µ

(
1− e−2µt

)
. This implies that

u(x0, x, t) =
1√

2πρ(t)
exp

(
−
(
x− x0e

−µt)2 /2ρ(t)
)

Now suppose we sample x0 from the steady state density u0(x0) = Ce−x
2
0/2ρ.

The probability density to observe a transition from x0 to x is the probability
of first choosing X(0) = x0, then making a transition from that x0 to x:

r(x0, x, t) = u0(x0)u(x0, x, t)

= Ce−x
2
0/2ρ

1√
2πρ(t)

exp
(
−
(
x− x0e

−µt)2 /2ρ(t)
)
.

Calculating the exponents shows that

r(x0, x, t) = Ce−x
2
0/2ρ

1√
2πρ(t)

exp
{
−1
2ρ

(
x2

0 + x2

1− e−2µt
− 2x0xe

−µt

1− e−2µt

)}
.

The interesting thing about this formula is that it symmetric in x and x0. In
other words, the probability of observing an x0 → x transition is the same as
the probability of observing an x→ x0 transition.

This is the principle of detailed balance: In steady state, the probability of
observing the transition y → x is the same as the probability of observing x→ y.
It is called “detailed” balance because it is a more restrictive than the simple
balance condition required for u0 to be the steady state. Suppose u(x0, x, t)
is any transition density, not necessarily related to the Ornstein Uhlenbeck
process. A probability density u0(x) is a steady state for u if it satisfies the
balance condition

u0(x) =
∫
u0(x0)u(x0, x, t)dx0
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for all x. If u0(x0)u(x0, x, t) = u0(x)u(x, x0, t) for all x0 and x, then we can
integrate with respect to x0 using the fact that

∫
u(x, x0, t)dx0 = 1 for all x

(because u is a transition density) and see that u0 satisfies the balance condition
to be a steady state. It will turn out that detailed balance is a particularly useful
way to satisfy the balance condition, even though it is not necessary for balance.

These two forms of the detailed balance condition, 〈f, Lg〉u0 = 〈Lf, g〉u0 and
the symmetry of r, are closely related. In finite dimensional space and without
weights, this relation is that if A is a symmetric matrix, then S(t) = etA also is
symmetric.

3.4 Multidimensional processes

A multidimensional Ornstein Uhlenbeck process is a linear process with linear
constant intensity random forcing. If µ is an n × n matrix and σ is an n ×
m matrix (neither needs to be symmetric), and W (t) = (W1(t), . . . ,Wm(t))
is an m dimensional standard Brownian motion whose components Wk(t) are
independent, then we can interpret (2) as an equation for the evolution ofX(t) =
(X1(t), . . . , Xn(t)). The case m < n is common. In this case, σ has more rows
than columns. The case m > n is pointless and we never consider it.

The solution formula (3) is almost correct, provided that we interpret eµt

as the matrix exponential that satisfies ∂teµt = µeµt. The only modification
is that σeµ(T−t) does not make sense because it is not compatible for matrix
multiplication if m < n. The correct form is (check this)

X(T ) = e−µtX(0) +
∫ T

0

eµ(T−t)σdW (t) . (13)

This formula shows that if X(0) is Gaussian or deterministic, then X(T )
also is Gaussian for all T > 0. Therefore, we can identify the limiting density of
X(T ) as T →∞ by figuring out the limiting mean and covariance matrix. The
limit will exist if the ODE ẋ = −µx is strongly stable, which is the same as the
eigenvalues of µ having positive real parts2. The mean m(t) = E[X(t)] satisfies
the simple differential equation

dm = dE[X(t)] = E[dX] = E[−µXdt] + σE[dW ] = −µ m dt .

This shows that m(t)→ 0 as t→∞ as expected.
The covariance matrix calculation is similar. Let ρ(x) = E[X(t)X∗(t)]

be the covariance matrix at time t. Using the Ito calculus and the fact that
E[Q(t)dW (t)] = 0 for any Q(t) defined by time t, we have

dρ = dE [X(t)X∗(t)]
= E [(dX)X∗] + E [X (dX∗)] + E [(dX) (dX∗)]
= E [−µXdtX∗] + E [X (−X∗µ∗dt)]

2An eigenvalue with real part equal to zero would make the system neutrally stable or
“weakly stable”. The randomly forced neutrally stable system does not have a steady state.
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= −µE [XX∗] dt− E [XX∗]µ∗dt + E [σdWdW ∗σ∗]

=
{
− (µρ+ ρµ∗) + σσ∗

}
dt .

The matrix differential equation

ρ̇ = − (µρ+ ρµ∗) + σσ∗ (14)

is an example of a class of equations called Liapounov equations or Ricatti
equations, though Ricatti equations usually are quadratically nonlinear instead
of linear as (14). The limit ρ = limt→∞ ρ(t) is found by setting ρ̇ = 0 and
solving the resulting algebraic equations.

The correct multicomponent generalization of (4) is (check this)

ρ(t) =
∫ t

0

e−(t−s)µσσ∗e−(t−s)µ∗ds .

It is easy to check that this satisfies (14) and that the integral is positive (as a
matrix) for all t. Even if σ does not have full rank, ρ(t) will be positive definite
if the matrix with many columns

K =
(
σ | µσ | µ2σ | · · · | µn

)
has rank n. This is a theorem of R. Kalman (proof omitted but not that
difficult). The limit value is

ρ = lim
t→∞

ρ(t) =
∫ ∞

0

e−tµσσ∗e−tµ
∗
dt .

Techniques of numerical linear algebra give a way to calculate, and show it
is unique, ρ without doing the integral. As for any square matrix, µ may be
put in upper Schur form using an orthogonal change of coordinates. That is,
there is an n×n matrix, Q with QQ∗ = I so that µ = QLQ∗, where L is upper
triangular with the eigenvalues of µ on the diagonal. Writing σσ∗ = D, this
puts µρ+ ρµ∗ = σσ∗ in the form

QLQ∗ρ+ ρQ∗L∗Q = D .

Note that the elements of L and Q may be complex, particularly if the eigen-
values of µ are not real. Now multiply from the left by Q∗ and from the right
by Q to get

Lρ̃+ ρ̃L∗ = D̃ ,

where ρ̃ = Q∗ρQ and D̃ = Q∗DQ. This allows us to calculate the elements of ρ̃
one by one as is done in back substitution. First, L11ρ̃11 + ρ̃11L11 = D̃11 (Ajk is
the (j, k) entry of A, z is the complex conjugate of z). So, since Re(L11) > 0 > 0
(by hypothesis on µ), ρ̃11 = D̃11/2Re(L11) > 0 is determined. The rest of the
elements of ρ̃ can be computed one by one in a similar way. Finally, we have
ρ = Qρ̃Q∗.
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Now that we know the multidimensional process has a steady state, we can
look for eigenfunctions that describe the rate of convergence to steady state.
The probability density for X(t) satisfies the forward equation

∂tu = L∗u =
1
2

∑
ij

Dij∂xi
∂xj

u+
∑
i

∂xi

∑
j

µijxju

 ,

again with D = σσ∗. A calculation shows that if u0(x) = Ce−x
∗Hx/2 with

H = ρ−1 (so that µρ + ρµ∗ = D is equivalent to Hµ + µ∗H = HDH), then
L∗u0 = 0. This is the steady state density, which we already knew from the
covariance calculations above.

Finding the rest of the eigenfunctions is simpler if we assume that µ has
n real eigenvalues and linearly independent eigenvectors. The construction is
an induction as in the one dimensional case. Suppose w is an eigenvector of µ
and satisfies µw = αw. Suppose that L∗u = λu. Then v = (w · ∇)u satisfies
L∗v = λv − αv, as we now verify. These calculations are simpler using the
summation convention, which allows formulas such as (w · ∇)u = wk∂xk

u. The
calculation concerns only the second term

∂xi
(µijxjwk∂xk

u) = wk∂xk
{∂xi

(µijxju)} − ∂xi
(µijδjkwku)

= wk∂xk
{∂xi

(µijxju)} − ∂xi
(µijwju)

= wk∂xk
{∂xi

(µijxju)} − αwi∂xi
u

= wk∂xk
{∂xi

(µijxju)} − αv

Therefore,

L∗v = L∗ {(w · ∇)u} = (w · ∇)L∗u− αv = λv − αv ,

as claimed. Therefore, if α1, . . . , αn are the eigenvalues of µ with corresponding
eigenvectors wk, and if p = (p1, . . . , pn) is a sequence of non-negative integers,
then

up = (w1 · ∇)p1 · · · (wn · ∇)pn uu

satisfies
L∗up = − (p1α1 + · · ·+ pnαn)up .

The rest of the structure of the one dimensional problem also general-
izes. Let d = p1 + · · · + pn be the degree of up, then up = Hp(x, ρ)u0,
where Hp is a polynomial of degree d. These are eigenfunctions of L: LHp =
− (p1α1 + · · ·+ pnαn)Hp. They satisfy the orthogonality relation 〈Hp, Hq〉u0 =
0 if p 6= q. Let Sd be the space of all polynomials of degree at most d. Then the
polynomials Hp with the degree of p not more than d is a basis for Sd. More-
over, let Td be the orthogonal complement of Sd−1 in Sd in the u0 weighted
inner product. Then the Hp with the order of p equal to d form a basis of Td.
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3.5 Example

We consider a discrete approximation to the heat equation in notation adapted
to the above discussion. Let x(r, t) be the temperature at location r at time t.
Suppose this satisfies

∂tx =
1
2
∂2
rx ,

with boundary conditions x(0, t) = x(1, t) = 0. Approximate the heat equation
using n equally spaced points rj = j∆r. Let xj(t) be the approximation to
x(rj , t). The approximation to the heat equation is

ẋj =
1
2
xj+1 − 2xj + xj−1

∆r2
.

This can be written as ẋ = −µx, where µ (up to a constant multiple) is the
(n− 1)× (n− 1) matrix we encountered earlier as the inverse of the covariance
matrix for Brownian motion constrained to have X(0) = X(1) = 0.

If we add noise, the dynamics become

dXj =
1

2∆r2
(Xj+1 − 2Xj +Xj−1) + σdWj . (15)

The steady state covariance satisfies (µ being symmetric) µρ + ρµ = σI, so
ρ = 1

2σµ
−1. We have seen that the eigenvalues of µ are

αk =
1− cos(kπ∆r)

∆r2
.

For small k, these are approximately αk = π2k2/2. Therefore, the smallest
eigenvalues of L∗ for (15) are λ = −α1 ≈ −π2/2, λ = −α2 ≈ −2π2, λ =
−2α1 ≈ −π2, λ = −α1 − α2 ≈ 5

2π
2, etc. Note that the slowest mode is a linear

mode, but the second slowest is quadratic and the third slowest is cubic (−3α3).
The fastest linear mode is −αn ≈ 2/∆r2. The matrix µ is ill conditioned for

large n, which means that it has a wide range of eigenvalues: α1/αn = O(n2).
This causes significant difficulties for Markov Chain Monte Carlo algorithms
that use dynamics like (15).

4 Stochastic Differential Equations

A stochastic differential equation takes the form

dX = a(X(t), t)dt+ b(X(t), t)dW (t) . (16)

The solution, X(t), is a continuous but random function of t. It in the multi-
component case, X(t) = (X1(t), . . . , Xn(t)). In this case the drift “coefficient”,
a(x, t), has n components and the noise coefficient, b(x, t), is an n ×m matrix
with m ≤ n. The source of noise is m independent Brownian motion components
W (t) = (W1(t), . . . ,Wm(t)).
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The interpretation of (16) is subtle in ways we will not explore completely
here. However, one way to define the solution is as the limit of forward Euler
approximations. Choose a time step h and times tk = kh. The approximation
solution, Xh(t), is defined by

Xh(tn+1) = Xh(tn) + a(Xh(tn), tn)h+ b(Xh(tn), t) (W (tn+1)−W (tn)) . (17)

According to this formula, to generate a forward Euler path, we must generate a
Brownian motion path, then use (17) to generate the corresponding approximate
sample path of (16) from it. More precisely, for fixed W and T , we imagine a
sequence of h values converging to zero and define

X(W [0, T ], T ) = lim
h→0

Xh(W [0, T ], T ) .

Writing f(W [0, T ]) means that f depends on the values of W (t) for all t in the
range 0 ≤ t ≤ T . It is convenient for theoretical discussion to consider Xh to
be defined for all t, not just the discrete times tn. We do this using piecewise
linear interpolation.

4.1 Strong accuracy

The strong accuracy of the Euler method (17) measures the expected difference
between Xh and X. Here and everywhere below we do not indicate the depen-
dence of X or Xh on W , though both depend on W . Strong accuracy of order
p means that

E
[ ∣∣Xh(T )−X(T )

∣∣ ] = O (hp) . (18)

The Euler method (17) satisfies this with p = 1/2. We will see in examples that
this is sharp in the sense that the expected error is of the order of h1/2 and
not smaller. The relation (18) is an L1 estimate, which is hard to approach by
direct computation. The standard way to approach it is with the L2 estimate

E
[ ∣∣Xh(T )−X(T )

∣∣2 ] = O
(
h2p
)
. (19)

This implies the L1 estimate because of the Cauchy Schwarz inequality: If Y
and Z are any random variables, then

E [ |Y Z| ] ≤
(
E
[
Y 2
]
E
[
Z2
] )1/2

.

In particular, if Z = 1, then E [ |Y | ] ≤ E
[
Y 2
]1/2, which is how (18) follows

from (19). Some people prefer to cite Jensen’s inequality, which states that if
φ(y) is a a convex function of y, then

φ (E [Y ] ) ≤ E [φ(Y ) ] .

Taking φ(y) = y2 then gives (18) from (19). Finally, versions of Doob’s inequality
from the theory of martingales allows us to strengthen (19) to a statement about
the path up to time T :

E

[
sup

0≤t≤T

∣∣Xh(t)−X(t)
∣∣2] = O

(
h2p
)
. (20)
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This is another advantage of L2. Doob’s inequality takes a weaker and more
complicated form in L1. Of course, (20) implies he L1 bound

E

[
sup

0≤t≤T

∣∣Xh(t)−X(t)
∣∣] = O (hp) .

The proof of the L2 bound has two main ingredients, consistency and stabil-
ity. The consistency step is a bound for the error created in a single time step.
The SDE (16) implies that3

X(t+ h)−X(t) =
∫ h

0

a(X(t+ s))ds +
∫ h

0

b(X(t+ s))dW (s) . (21)

We write this symbolically as

X(t+ h) = X(t) + Ψ(X(t),W [tn, tn+1], h) .

In general, x+ Ψ(x,W [0, T ], T ) is the solution at time T to the SDE (16) with
X(0) = x. If the coefficients do not depend on t, the starting time if irrelevant.
For small h, we assume that X(t+ s) ≈ X(t). Using this in (21) gives

X(t+ h)−X(t) ≈ a(X(t))h + b(X(t)) (W (t+ h)−W (t) ) . (22)

This is the basis of the Euler approximation (17). We write right hand side of
(22) as

Φ(x,W [0, T ], T ) = a(x)T + b(x)
(
W (T )−W (0)

)
,

so the Euler method takes the form

Xh(tn+1) = Xh(tn) + Φ(Xh(tn),W [tn, tn+1], h) .

The consistency bound controls the difference between Ψ and Φ. This de-
pends on the difference between X(t + s) and X(t) for s ≤ h. We assume
that

|a(x)| ≤ M , |b(x)| ≤ M

for all x, and prove that

E
[
|X(t+ s)−X(t)|2

]
≤ Cs .

This is the same as showing that

E
[
|Ψ(x,W [0, T ], T )|2

]
≤ CT . (23)

3We assume for notational simplicity that a and b do not depend on t. It is straightforward
but more time consuming to treat the more general case.
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Now, Ψ is the sum of two terms, which we bound separately using the fact that
(a+ b)2 ≤ 2a2 + 2b2. The first term is handled using Cauchy Schwarz and the
bound |a| ≤M :∣∣∣∣∣

∫ T

0

a(X(t)) dt

∣∣∣∣∣
2

=

∣∣∣∣∣
∫ T

0

a(X(t)) · 1 dt

∣∣∣∣∣
2

≤
∫ T

0

|a(X(t))|2 dt ·
∫ T

0

1 dt

≤ M2T · T = CT 2 ,

which is stronger than the needed bound for small T . Note that this bound is
true for every path, and therefore for the expected value.

The second term satisfies

E

 ∣∣∣∣∣
∫ T

0

b(X(t)) dW (t)

∣∣∣∣∣
2
 ≤ CT . (24)

This is a consequence of the Ito isometry formula, which states that if f(t) is
any adapted function of t, which we would write as f(t) = g(W [0, t], t), then

E

 ∣∣∣∣∣
∫ T

0

f(t) dW (t)

∣∣∣∣∣
2
 =

∫ T

0

E
[
|f(t)|2

]
dt . (25)

This, together with |b(x)| ≤M gives (24).
We pause to indicate the proof of the Ito isometry formula (25) because it

reveals the way lack of correlation in integrals with non-anticipating functions
leads to L2 bounds and the general utility of integrating squares to exploit
cancellation due to lack of correlation. The Ito integral on the left of (25) is
approximated by

n−1∑
j=0

Rj , with Rj = f(tj) (W (tj+1)−W (tj)) .

The main observation is that if j 6= k, then E[RjRk] = 0. Suppose, for example,
that k > j. We have assumed that f is non anticipating, which implies that both
f(tj) and f(tk) (and W (tj+1) −W (tj)) are determined by the values W [0, tk].
But the independent increments property of Brownian motion then implies that
W (tk+1)−W (tk) is independent of all these values, so

E[RjRk] = E[(det’d at time tk)(indep of time tk)] = E[· · ·] · 0 .

Now, the left side of (25) is approximately

E


n−1∑
j=0

Rj

2
 =

n−1∑
j=0

n−1∑
k=0

E [RjRk] =
n−1∑
j=0

E
[
R2
j

]
.
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Moreover, again using the independent increments property,

E
[
R2
j

]
= E

[
f(tj)2

]
E
[
∆W 2

j

]
= E

[
f(tj)2

]
∆t ,

so
∑n−1
j=0 E

[
R2
j

]
is the Riemann sum approximation to the right side of (25).

Taking h→ 0 finishes the proof.
The consistency estimate is

E
[ ∣∣Ψ(x,W [0, T ], T )− Φ(x,W [0, T ], T )

∣∣2] ≤ CT 2 . (26)

We give a proof under the hypothesis that the drift and noise coefficients are
globally Lipschitz:

|a(x)− a(y)| ≤ C |x− y| , |b(x)− b(y)| ≤ C |x− y| . (27)

Both Ψ and Φ are sums of a drift and a noise term. The bound (26) follows (as
above) from bounds on these terms separately.

The drift term is (see above)

R1 = E

∣∣∣∣∣
∫ T

0

(
a(X(t))− a(X(0))

)
dt

∣∣∣∣∣
2


≤ T

∫ T

0

∣∣a(X(t))− a(X(0))
∣∣2 dt .

With this, and (23) and (27), we find

R1 ≤ hC
∫ T

0

E
[
(X(t)−X(0))2 dt

]
≤ CT

∫ T

0

t dt = CT 3 .

This is more, by one power of T , than is needed to bound the drift contribution
to (26). Indeed, the largest errors are due to the noise.

The noise term may be handled using the Ito isometry formula, with (27)
and (23):

R2 = E

 ∣∣∣∣∣
∫ T

0

(b(X(t))− b(X(0))) dW (t)

∣∣∣∣∣
2


=
∫ T

0

E
[ ∣∣ b(X(t))− b(X(0))

∣∣2 ] dt
≤ C

∫ T

0

E
[∣∣X(t)−X(0)

∣∣2 ] dt
≤ C

∫ T

0

t dt = CT 2 .

Convergence proofs of computational methods often take the form of con-
sistency and stability arguments. Roughly speaking, consistency is the fact that
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the computational method is consistent with the formulation of the limit prob-
lem. In the present case, the estimate (26) states that at least for one time step,
the Euler method is consistent with the SDE. More technically, we might call
Ψ−Φ truncation error. It is the source of the deviation between the paths X(t)
and Xh(t). Stability is the statement that small deviations between X and Xh

caused by truncation error are not amplified too much during the simulation
process. Stability usually is the harder part, though here it is more complicated
than hard. We do the stability argument only for the case with zero drift. Even
though drift is the smaller source of error it is the larger source of technical
complexity of a not very interesting kind.

We get a recurrence relation for the error by subtracting the Xh recurrence
relation from that forX, and then subtracting and adding Φ(X(tn),W [tn, tn+1], h):

X(tn+1)−Xh(tn+1) = X(tn)−Xh(tn) (28)
+ Ψ(X(tn),W [tn, tn+1], h)− Φ(X(tn),W [tn, tn+1], h)
+ Φ(X(tn),W [tn, tn+1], h)− Φ(Xh(tn),W [tn, tn+1], h) .

In the absence of drift,

E [ Ψ(x,W [tn, tn+1], h) | Ftn ] = 0 ,

and the same for the other three terms on the right side. Therefore we may
calculate, again using (a+ b)2 ≤ 2a2 + 2b2,

E
[ ∣∣X(tn+1)−Xh(tn+1)

∣∣2 ] ≤ E
[ ∣∣X(tn)−Xh(tn)

∣∣2 ] + 2un + 2vn ,

where

un = E
[
|Ψ(X(tn),W [tn, tn+1], h)− Φ(X(tn),W [tn, tn+1], h)|2

]
,

and

vn = E
[ ∣∣Φ(X(tn),W [tn, tn+1], h)− Φ(Xh(tn),W [tn, tn+1], h)

∣∣2 ] .
The consistency bound (26) says that un ≤ Ch2. For vn, write W (tn+1) −
W (tn) = ∆Wn, so that

Φ(X(tn),W [tn, tn+1], h)− Φ(Xh(tn),W [tn, tn+1], h)
=
(
b(X(tn))− b(Xh(tn))

)
∆W .

The crucial fact now is that ∆W is independent of everything up to time tn, so
the expected square is (again using (27))

vn ≤ E
[ ∣∣b(X(tn))− b(Xh(tn))

∣∣2 ] · E [ |∆W |2 ]
≤ ChE

[ ∣∣X(tn)−Xh(tn)
∣∣2 ] .
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This finally is enough estimates. Defining en = E
[ ∣∣X(tn)−Xh(tn)

∣∣2 ], we
have shown that

en+1 ≤ en + Ch2 + Chen .

Of course, we start with e0 = 0, so we get (using tn = nh)

en ≤ CeCtnnh2 = CeCtntnh .

This implies that if we fix T and let n go to infinity while h → 0 with tn ≤ T
always, then there is a C(T ) so that (19) is satisfied.

Milstein’s method is a modification of the Euler method that improves the
strong order of accuracy from p = 1/2 to p = 1. We explain the idea in
the simplest case of a one component diffusion with zero drift. We want a
Φ(x,W [0, T ], T ) that more closely resembles Ψ(x,W [0, T ], T ) for small T . In
the case of zero drift,

Ψ(x,W [0, T ], T ) =
∫ T

0

b(X(t))dW (t) ,

so we want a more accurate approximation to this integral than we get from
taking b(X(t)) ≈ b(x). Since X(t) is close to x, we expect B(X(t)) to be close
to b(x) and we make a Taylor approximation

b(X(t)) ≈ b(x) + b′(x)
(
X(t)− x

)
.

The second term on the right is a small correction to the first term. Therefore,
we may not need as accurate an approximation to it to improve the overall
accuracy. Milstein used the Euler approximation

X(t) ≈ x+ b(x)
(
W (t)−W (0)

)
.

These two approximations lead to

Ψ(x,W [0, T ], T ) ≈ ΨM (x,W [0, T ], T )∫ T

0

(
b(x) + b′(x)b(x)

(
W (t)−W (0)

) )
dW (t) , (29)

For one dimensional problems only, one can calculate the integral on the right
to get the Milstein method

Xh(tn+1) = Xh(tn) + b(Xh(tn))∆Wn +
1
2
b′(Xh(tn))b(Xh(tn))

(
∆W 2

n −∆t
)
.

(30)
The accuracy of this method in the strong sense is determined by

E
[
|Ψ(x,W [0, T ], t)− ΦM (x,W [0, T ], t)|2

]
= E

 ∣∣∣∣∣
∫ T

0

(
b(X(t)) −

[
b(x) + b′(x)b(x)W (t)

])
dW (t)

∣∣∣∣∣
2


=
∫ T

0

E
[ ∣∣∣ b(X(t)) − [ b(x) + b′(x)b(x)W (t) ]

∣∣2 ] dt
19



The error in the last line may be decomposed into the sum of the error in the
Taylor expansion of b and the error in the Euler approximation.

b(X(t)) − [ b(x) + b′(x)b(x)W (t) ]
= b(X(t)) − [ b(x) + b′(x) (X(t)− x) ]
+ [ b(x) + b′(x) (X(t)− x) ] − [ b(x) + b′(x)b(x)W (t) ]
= b(X(t)) − [ b(x) + b′(x) (X(t)− x) ]
+ b′(x) [ (X(t)− x) − b(x)W (t) ] .

The expected square of the second term is bounded by the consistency esti-
mate for the Euler method. The expected square of the first term depends on
M4(t) = E

[
|X(t)− x|4

]
. We can bound this by computing ∂tM4(t) and using

Ito calculus. The result is

E
[
|Ψ(x,W [0, T ], t)− ΦM (x,W [0, T ], t)|2

]
≤

∫ T

0

(
Ct2 + Ct2

)
dt

= CT 3 .

This is one power of T smaller than (26), the corresponding estimate for the
Euler method.

20


