
A stochastic differential equation is a particular type of noisy dynamical
system. Applications call for generating SDE sample paths subject to a variety
of constraints.

1 Multivariate normal

Let X ∈ Rn be an n component normal with covariance matrix C. Choose an
orthonormal family of vectors vk and eigenvalues λk so that Cvk = λkvk. The
λk are the principle components of X (or of C) and the vk the corresponding
principle components (the terminology differs slightly from place to place). The
random numbers Yk = vtkX are independent mean zero Gaussians with mean
zero and variance λj . Said another way, if V is the orthogonal matrix whose
columns are the vk, then Y = V tX is a multivariate normal with mean zero and
covariance Λ, the diagonal matrix with λk in the (k, k) position. The Yk also
may be called principle components, or possibly components in the principle
directions. To summarize, the eigenvalue/eigenvector decomposition of C is the
principle component analysis of X. When using PCE, we usually order the
principle values from largest to smallest: λk ≥ λk+1 for all k.

On the other hand, suppose we know the vk and λk. We can construct a
sample Yk as Yk = σkZk, where σk =

√
λk and the Zk are independent standard

normals. Therefore, the formula X =
∑n
k=1 σkZk provides a sample of X from

independent standard normals. This kind of PCA is helpful in many ways in
Monte Carlo practice. If we want to know A = E[f(X)], it is likely that the
larger principle components are more important than the smaller ones. For
example, the quantity B =

∫
f(σ1v1z1)e−z

2
1/2dz/

√
2π may be a helpful control

variate for evaluating A.

2 Brownian motion

A standard univariate Brownian motion path is a continuous random function
X(t) with X(0) = 0 and increments, ∆Xk = X(tk+1) − X(tk) independent
Gaussian random variables with mean zero and variance tk+1 − tk. Here tk
is any sequence of positive numbers with tk+1 > tk. Many problems involve
expected values of functions of Brownian motion and the intuitions gained by
studying Brownian motion help design methods for related problems.

We start with the PCA of standard Brownian motion. Since Brownian
motion is infinite dimensional, we start with finite dimensional approximations
then get the PCA of Brownian motion itself as a limit. Suppose we fix a T > 0.
For any integer n > 0, we divide the interval [0, T ] into n equal subintervals
using the notation h = T/n and tk = kh. The multivariate normal Xh ∈ Rn
has components Xh

k = X(tk), for 1 ≤ k ≤ n. We showed before that the
covariance matrix for Xh has H = C−1 that is tri-diagonal of the form .... .
Clearly the eigenvalues of C are the inverses of the eigenvalues of H while the
eigenvectors are the same. It happens (we will get more insight into this later)
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that the eigenvectors of H have the form vhk,j = sin(ωhk t
h
j ), where ... . If we take

the limit h → 0 and n → ∞ with T = nh fixed, the sequence of eigenvalues of
H converges to µk = (k + 1)2π2/T 2, as we verify by direct computation.

The PCA representation of a Brownian motion path is

X(t) =
T

π

∞∑
k=1

Zk

k + 1
2

sin
(
k + 1

2 )π
T

t

)
. (1)

This representation is valid only for t in the range 0 ≤ t ≤ T . Moreover, it
presents serious mathematical challenges. It is not straightforward to see that
the sum converges. Indeed, the Zk and the sine factors are of the order of unity,
so the terms in the sum seem to have the order of magnitude 1/k, which would
not by itself lead to a convergent sum. The series does converge in the L2 sense
because

E

[ ∞∑
k=1

Z2
k(

k + 1
2

)2
]

=
∞∑
k=1

1(
k + 1

2

)2 < ∞ .

However, this kind of convergence does not even imply that X(t) is continuous.
Many discontinuous are represented by L2 convergence Fourier series. If we
wish to generate a Brownian motion path using (??), we can use the FFT to
calculate the sums on the right efficiently.

The Brownian Bridge construction is another good way to generate Brownian
motion paths. For this, we consider a diadic collection of times. On level k, the
interval [0, T ] is divided into 2k equal subintervals. At the top is level zero with
a single interval [0, T ] whose endpoints may be written t0,0 = 0 and t0,1 = T .
At the next level [0, T ] is broken into two halves bounded by the points t1,0 = 0,
t1,1 = T/2, and t1,2 = T . The diadic points at level k are tk,j = j2−kT , for
integers j in the range 0 ≤ j ≤ 2k.

The construction itself is an algorithm that generates values for Xk,j =
X(tk,j) recursively proceeding from k to k + 1. At the top level we already
have X0,0 = X(0) = 0 and we need X0,1 = X(T ). But X(T ) is a mean zero
Gaussian with variance T , so we can take X0,1 =

√
TZ0,1, where Z0l,1 is a

standard normal. Things get interesting at the next level. From the properties
of Brownian motion, we know that the values (X(t1,1), X(t1,2)) = (X1,1, X1,2) is
a bivariate normal. Therefore, conditional on the value of X1,2, which already is
known from the previous level, the value of X1,1 is a univariate normal. Simple
calculations show that E [X1,1 | X1,2] = 1

2X1,2, and var [X1,1 | X1,2] = 1
4T . The

first result is very natural, that the expected value of the midpoint value should
be the average of the two end values. The second result may be surprising,
since the variance of X1,1 without information about X1,2 is T/2 instead of
T/4. Specifying both endpoint values constrains X1,1 to have a smaller variance.
With this information the sampling can be done using X1,1 = 1

2X0,1 +
√
t

2 Z1,1.
As usual, Z1,1 is a standard normal independent of all others.

The step of going from level k− 1 to level k is clear. We already have values
Xk,2j = Xk−1,j from the previous levels. We need to generate values for the new
points tk,2j+1. The Markov property (which is the main thing that makes this
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construction work) implies that the conditional distribution of Xk,2j+1 given all
the values on level k − 1 is the same as the distribution given the level k − 1
endpoints Xk,2j = Xk−1,j , and Xk,2j+2 = Xk−1,j+1. As above, the conditional
expectation of Xk,2j+1 is 1

2 (Xk−1,j +Xk−1,j+1). Let ∆tk = 2−kT be the length
of the diadic intervals at level k. The conditional variance of Xk,2j+1 is ∆tk/2
(which again is half the conditional variance if only the left value Xk,2j were
specified). Therefore, the sampling may be done by

Xk−2j+1 =
1
2

(Xk−1,j +Xk−1,j+1) +

√
∆tk

2
Zk,2j+1 .

One use of this Brownian bridge construction is similar to the PCA con-
struction, to have a way to separate random variables that have a large impact
on X from others that have a smaller impact.

3 The Ornstein Uhlenbeck Process

The Ornstein Uhlenbeck process is a simple modification of Brownian motion
to add mean reversion. Starting here, we refer to the proces of interest as X(t)
while W (t) will be Brownian motion. The general Ornstein Uhlenbeck process
satisfies the SDE

dX = −µXdt+ σdW . (2)

This means that we can write

X(T ) = e−µTX(0) + σ

∫ T

0

e−µ(T−t)dW (t) .

We see from this that X is a linear transformation of the Gaussian W so it is
Gaussian. This is contingent on X(0) being Gaussian if it is random. From this
we can calculate that X(T ) is a gaussian with mean e−µTX(0), and variance

σ2

∫ T

0

e−2µ(T−t)dt =
σ2

2µ
(
1− e2µT

)
→ σ2

2µ
as T →∞ .

As T →∞, the distribution of X(T ) converges to a gaussian that is independent
of the initial condition (if the mean and variance converge and if it’s Gaussian,
the distribution converges).

Much Monte Carlo depends on time dependent random processes like this so
we analyze this in more detail, focusing on features that have analogues in many
Monte Carlo applications. Suppose u(x, t) is the probability density function
for X(t). This satisfies the Kolmogorov forward equation (other names include,
but are not limited to, the forward equation, the Fokker Planck equation, and
the Chapman Kolmogorov equation)

∂tu =
σ2

2
∂2
xu+ µ∂x (xu) . (3)
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We write this as

∂tu = L∗u , where L∗u =
σ2

2
∂2
xu+ µ∂x (xu) . (4)

It is traditional to call the operator in (??) L∗ so that it’s adjoint that appears
in the backward equation can be called L.

If the distribution of X(t) has a limit as t → ∞, then we expect u(x, t) →
u0(x) as t → ∞. From the equation (??), this suggests that u0 is a solution
with L∗u0 = 0. This gives

σ2

2
∂2
xu+ µ∂x (xu) = 0 ,

If u0 → 0 as x→∞ together with its derivatives, this may be integrated to

σ2

2
∂xu0 + µxu0 = 0 .

The solution takes the form u0(x) = Ce−x
2/2ρ, with ρ = σ2/2µ.

We are interested in the rate of convergence u(·, t) → u0,which depends on
the other eigenvalues of the operator L∗. That is, we seek functions

L∗uk =
σ2

2
∂2
xuk(x) + µ∂x (xuk) = −λkuk . (5)

It turns out that the solutions have the form uk(x) = ∂kxu0. We verify this by
induction on k, the case k = 0 having been done above. The trick for doing the
calculation is the “differentiation by parts” formula f∂xg = ∂x(fg)− (∂xf)g. If
f = ∂k−1

x u0 and g = x, the result is

x∂kxu0 = ∂x(x∂k−1
x u0)− ∂k−1

x u0 .

Therefore, using L∗uk−1 = −λk−1uk−1,

L∗uk = L∗∂xuk−1 =
σ2

2
∂2
x∂xuk−1 + µ∂x(x∂xuk−1)

= ∂x

(
σ2

2
∂2
xuk−1

)
+ ∂x ( µ∂x (xuk−1) ) − µ∂xuk−1

= ∂x (L∗uk−1)− µuk = − (λk−1 + µ)uk .

This shows that L∗uk = −λkuk with λk = λk−1 +µ. To conclude, the eigenval-
ues are 0 (the steady state), −µ, −2µ, etc. The corresponding eigenfunctions are
derivatives of Gaussians, which is to say, given by Hermite polynomials (more
on this below).

We use the above information to describe the behavior of the probability
density u(x, t). The solution of the evolution equation (??) is a linear combina-
tion of eigenfunctions:

u(x, t) =
∞∑
k=0

ake
−kµtuk(x) , (6)
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where the coefficients are determined by the initial data u(x, 0). The k = 0 term
corresponds to the steady state solution a0u0(x). All the other terms decay with
various exponential rates. Slowest to decay is the k = 1 term, which will make
up most of the difference between u(x, t) and a0u0(x) for large t:

u(x, t)− a0u0(x) ≈ a1e
−µtu1(x) , for large t.

It may not be surprising that the exponential decay rate µ in (??) results in
the same exponential decay rate for u(x, t)− a0u0(x). What is new in the PDE
solution is the family of faster decay rates 2µ, 3µ, etc. We will find versions of
this phenomenon in any linear Gaussian process.

There are many practical applications for this kind of analysis. One con-
cerns dynamic sampling methods, also called Markov Chain Monte Carlo. A
complicated probability distribution may not have an efficient simple sampler,
but there may be a dynamic process, a Markov Chain, that preservers the dis-
tribution. Here, the dynamical process (??) preserves the Gaussian Ce−x

2/2ρ.
A major issue for dynamic samplers is the rate of convergence: How long do
you have to run the process before the distribution of X(t) closely approximates
u0(x). In this simple problem, the convergence time is of the order of 1/µ, which
also is the decay rate for the linear Gaussian process (??).

3.1 Hermite polynomials

Hermite polynomials have many applications in Monte Carlo and other parts of
applied probability. The nth Hermite polynomial, Hn(x), is defined by

Hn(x)e−x
2/2 = ±∂nx e−x

2/2 . (7)

The calculations ∂xe−x
2/2 = −xe−x2/2 and ∂2

xe
−x2/2 = (x2 − 1)e−x

2/2, and
∂3
xe
−x2/2 = (−x3−3x)e−x

2/2 imply that the first few polynomials are H0(x) = 1,
H1(x) = x, H2(x) = x2 − 1 and H3(x) = x3 − 3x. It is common to choose the
sign so that the leading term is positive and also to choose the sign itself always
to be positive (which would give H1(x) = −x). It is easy to verify by induction
that (??) defines polynomials of degree n with leading coefficient equal to ±1.

The Hn have the orthogonality property that∫ ∞
−∞

Hn(x)Hm(x)e−x
2/2dx = 0 , for n 6= m. (8)

We briefly indicate a proof of this by induction on m, assuming m < n, since a
better proof will come shortly. Actually, we prove (??) holds for a given m and
all n > m by induction on m. It clearly is true for m = 0, because then it just
is
∫
∂nx e

−x2/2dx = 0. Now assume it is true for m− 1 and try to prove it for m.
The rewrite of (??) as Hm(x) = ex

2/2∂mx e
−x2/2 puts (??) in the form∫ ∞

−∞
ex

2/2
(
∂nx e

−x2/2
)(

∂mx e
−x2/2

)
dx = 0
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Write ∂mx = ∂x∂
m−1
x and integrate by parts, and we get the two terms

−
∫ ∞
−∞

ex
2/2
(
∂n+1
x e−x

2/2
)(

∂m−1
x e−x

2/2
)
dx

−
∫ ∞
−∞

ex
2/2
(
x∂nx e

−x2/2
)(

∂m−1
x e−x

2/2
)
dx

The top term is zero by the induction hypothesis, which is why we used a more
complex induction hypothesis. We study the bottom term using something
similar to the differentiation by parts idea above, namely the formula x∂nxf =
∂nx (xf)− n∂n−1

x f . This implies that the bottom term is∫ ∞
−∞

ex
2/2∂nx

(
xe−x

2/2
)(

∂m−1
x e−x

2/2
)
dx

− n

∫ ∞
−∞

ex
2/2
(
∂n−1
x e−x

2/2
)(

∂m−1
x e−x

2/2
)
dx

The bottom term is zero because m− 1 < n− 1. The top term is zero because
xe−x

2/2 = −∂xe−x
2/2, so it is equal to

−
∫ ∞
−∞

ex
2/2
(
∂n+1
x e−x

2/2
)(

∂m−1
x e−x

2/2
)
dx = 0 ,

again by induction.
The orthogonality property of Hermite polynomials gives a different way to

find them. This is because of the fact that if p(x) is a polynomial of degree n
if and only if it may be written as a sum of Hermite polynomials of order not
more than n:

p(x) =
n∑

m=0

amHm(x) .

Therefore, (??) is true for a given n and all m < n if and only if∫
Hn(x)xme−x

2/2dx = 0

for all m < n. This is the same as saying that E[Hn(X)Xm] = 0 for all m < n,
where X is a standard normal random variable. We compute the first few
that way. Of course, H0(x) = 1. H1(x) is the polynomial of degree 1 that is
orthogonal to X0 = 1, which is to say H1(x) = x. Next, H2(x) is the quadratic
that is orthogonal to x and 1. We achieve E[H2(X)X] = 0 if H has the form
x2 − a. We achieve E[H2(X)X0] = E[H2(X)] = 0 if a = E[X2] = 1, i.e. if
H2(x) = x2 − 1. Finally, we want H3(x) = x3 − ax2 − bx − c to make H3

orthogonal to 1, x, and x2. The even powers are automatic if H3(x) is odd,
i.e. if H3(x) = x3 − bx. The remaining orthogonality condition E[H3(X)X] =
0 is E[X4] − bE[X2] = 0, which gives b = 3, as claimed above. It is the
orthogonality properties of Hermite polynomials that makes them handy, for

6



example, in finding kernel functions for density estimation that satisfy several
moment conditions.

In the slightly more general situation of e−x
2/2ρ, we can define Hn(x, ρ) =

ex
2/2ρ∂nx e

−x2/2ρ. These polynomials are orthogonal in the natural sense∫ ∞
−∞

Hn(x, ρ)Hm(x, ρ)e−x
2/2ρdx = 0

for m 6= n. The proof is the same as above.

3.2 Adjoint eigenfunctions

The operator L∗ has an adjoint operator, L. The eigenvalues of L∗ and L are
the same but the eigenfunctions are different. The eigenfunctions of L are used
to determine the expansion coefficients ak in (??). Later we will find a way
to derive the adjoint eigenfunctions directly from the un using the principle of
detailed balance.

We explain the ideas in a finite dimensional setting. Suppose A is an n ×
n matrix. The right eigenvectors of A are vk with Avk = λkvk. The left
eigenvectors are row vectors uk with ukA = λkuk. This is the same as A∗u∗k =
λku

∗
k. That is, the left eigenvectors of A (when written as column vectors) are

the right eigenvectors of the adjoint (transpose) of A. The eigenvalues λk are the
same. The right and left eigenvectors satisfy biorthogonality relations ukvl = 0
if λk 6= λl.

For column vectors f and g, let (f, g) be the l2 inner product (f, g) = f∗g =∑n
k=1 fkgk. The adjoint of the n× n matrix A is defined by the property that

it should satisfy (A∗f, g) = (f,Ag) for all vectors f and g (check this). It is
possible to define other inner products. The one that will be useful for us is the
weighted l2 inner product 〈f, g〉w =

∑n
k=1 fkgkwk, where the wk are n positive

weights. Each weighted norm determines a different A∗ through the property
〈A∗f, g〉w = 〈f,Ag〉w for all f and g. In this case, the elements of A∗ are given
by A∗jk = Akjwk/wj (check this). The eigenvalues of A∗ are the same as the
eigenvalues of A (for example, because A∗ is similar to the transpose of A).
The eigenvectors satisfy the natural biorthogonality relation: If Avj = λjvj and
A∗uk = λkuk with λj 6= λk, then 〈uk, vj〉w = 0 (check this).

Back to L∗, we compute the adjoint in the L2 inner product (f, g) =∫∞
−∞ f(x)g(x)dx. This adjoint is defined by the requirement that for all func-

tions for which the computation makes sense: (L∗f, g) = (f, Lg). This is done
by integration by parts:

(L∗f, g) =
∫ ∞
−∞

(L∗f(x)) g(x)dx

=
∫ ∞
−∞

(
σ2

2
∂2
xf(x) + µ∂x (xf(x))

)
g(x)dx

=
∫ ∞
−∞

f(x)
(
σ2

2
∂2
xg(x)− µx∂xg(x)

)
dx
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=
∫ ∞
−∞

f(x) (Lg(x)) dx ,

with

Lg(x) =
σ2

2
∂2
xg(x)− µx∂xg(x) .

Note that the second derivative terms in L∗ and L are the same while the first
derivative terms change sign. Also, the x is inside the differentiation in L∗ but
outside in L.

It turns out that the eigenfunctions of L are Hermite polynomials vk(x) =
Hk(x, ρ) = ex

2/2ρ∂kxe
−x2/2ρ. The biorthogonality relation (uj , vk) = 0 for

j 6= k is the orthogonality relation for Hermite polynomials, given that uj =
∂jxe
−x2/2ρ = Hj(x, ρ)e−x

2/2ρ. The eigenvalue relation Lvk = −kµvk can be ver-
ified by induction on k using the recurrence relation (one of many) vk+1(x) =
−x
ρ vx(x) + ∂xvk(x).
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