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This is a set of lecture notes for a graduate class on Monte Carlo methods
given at the Courant Institute of Mathematical Sciences at NYU in the fall
of 2005 and again in 2007. During these years important new techniques and
applications emerged. At the same time, most basic introductions to Monte
Carlo are specialized for one of the application disciplines. These notes attempt
to present Monte Carlo principles and methods in a way that will be useful to
people from many disciplines. I hope to express ideas from the various Monte
Carlo communities in a common mathematical language so that people from
each discipline can use tricks invented for other applications. Given the variety
of people using Monte Carlo and the range of application areas, it is surprising
how far one can go in this way.

Roughly speaking, Monte Carlo1 means computing using random numbers.
It is helpful to refine this definition and distinguish between true Monte Carlo
and simulation. We take simulation to mean generating individual random
objects faithfully according to some model. For example, we might want to see
what shape clouds come from a specific model of cloud formation that involves
randomness. The point of simulation might not be gather detailed statistics,
but just to see what a few random objects look like.

By contrast2, Monte Carlo uses random numbers as a means to evaluate
quantities that themselves are not random. For example, suppose f(x) is the
probability density for a one dimensional random variable, X. One way to
evaluate3 A = E[X] is to generate many samples (random variables Xk with
probability density f) and average them. More generally, we could generate a
number of random objects (e.g. clouds) and collect interesting statistics about
them. The difference is that the expected value of X or of some more complex
statistic is a property of a random variable but is not itself random. There-
fore, it may be possible to evaluate A without generating random samples with
probability density f(x). For example, we could estimate A =

∫
xf(x)dx by

numerical quadrature. Estimating A by averaging many Xk would be called
plain simulation. Practitioners often find clever methods that are better (faster
or more accurate). Simulation is mostly programming, but Monte Carlo is all
about devising and understanding new computational strategies. Each piece of
creativity will improve your results.

1Monte Carlo is the capital of the tiny country Monaco and is a gambling center of Europe.
Random numbers are important there too.

2This distinction was formulated in the text by Kalos and Whitlock.
3See the next section for basic definitions and notation.
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When choosing a Monte Carlo method for a given problem, one should have
a strong bias against Monte Carlo at all. A practical deterministic method
almost always is better than Monte Carlo. If you have an integral in fewer
than, say, four variables, do it by deterministic quadrature. If you have a
Markov chain with less than a thousand states or a diffusion process in less
than four dimensions, use a backward equation. The statistical error in Monte
Carlo is at least O(1/

√
L) (which isn’t very small), where L is the number of

samples4 It is a rare deterministic method that is worse than this.
Keep this in mind when reading these notes or other Monte Carlo books.

We authors often use one dimensional examples to illustrate specific principles
although we know that this is not the fastest or most accurate way to compute a
one dimensional integral. The real world is full of problems where Monte Carlo
is the method of choice.

1 Overview

An example will illustrate the themes discussed in these notes. One part of a
physics problem reduces to calculating the integral

A(λ) =
∫
|x|<1

∫
|y|<1

e−λ|x−y|

|x− y|
dxdy , (1)

or, more generally, the integrals

An(λ) =
∫
|x1|<1

· · ·
∫
|xn|<1

e−λ|x1−x2|

|x1 − x2|
· · · e

−λ|xn−1−xn|

|xn−1 − xn|
dx1 · · · dxn . (2)

Here, the variables x, y, and the xk all are in R3. The integral (??) is a six
dimensional integral (maybe reducible to five or even four dimensions), which
makes direct quadrature difficult. The integral (??) is in 3n (or 3n− 1) dimen-
sions, which makes quadrature completely impractical. The problem is first to
calculate A(λ) for various λ values and next to find λ∗ that gives A(λ∗) = 1

2 .
The first step in evaluating A(λ) by Monte Carlo is to express it in terms of

the expected value of a random variable. We express A as

A(λ) = Const · Eλ[Z] . (3)

The Eλ[·] on the right means that the probability distribution of Z depends on
λ. For example, we could let X and Y be independent random variables with
uniform probability density in the unit ball B =

{
x ∈ R3 with |x| < 1

}
. This

probability density is (recall that the volume of B is 4
3π)

f(x) =
{

3
4π if x ∈ B
0 otherwise.

4We use L for the number of samples, the run length so that n always can be the number
of components of a multivariate random variable.
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Then multiplying and dividing by the normalizing 4
3π gives

A(λ) =
(

4π
3

)2 ∫ ∫
e−λ|x−y|

|x− y|
f(x)f(y)dxdy

=
(

4π
3

)2

E

[
e−λ|X−Y |

|X − Y |

]
=

(
4π
3

)2

E[Z] ,

where

Z =
e−λ|X−Y |

|X − Y |
. (4)

We do not have a formula for the probability density of Z, but we can generate
a random sample of it by choosing X and Y independently in B then applying
(3).

To evaluate A(λ), we generate L independent Z samples, Z1, . . ., ZL, and
use the estimator5

A =
(

4π
3

)2

E[Z] ≈ Â(λ) =
(

4π
3

)2 1
L

L∑
k=1

Zk . (5)

The law of large numbers states that Â → A as L → ∞. It may take quite a
large L, and lots of computer time, to get Â close enough to A to satisfy us.
Computational error bars tell us how far Â is likely to be from A. We will
follow the statistician’s habit of expressing this with a confidence interval. For
example, we might say that the probability that A is not between Â − r and
Â + r is about 5%. It is not always necessary to present the error bars to the
consumers of your results, just as you don’t show them how you debugged and
tested your computer code. A Monte Carlo practitioner who skips testing or
neglects error bars deserves to get the wrong answer, and will.

We could compute Â(λj) for a few λj by doing separate runs for each value
of λ, but many applications demand more than that. We want to know the
function A(λ), the shape of its graph, its derivatives, the inverse function, etc.
The statistical noise in the estimators Â(λj) may be amplified in finding this
other properties of A(λ). There often are better ways6. Sensitivity analysis
provides estimates for derivatives of A(λ) having less noise than the naive finite
difference (see below). Stochastic approximation provides more sophisticated
ways to find solutions of equations such as A(λ) = 1

2 .
There are other more sophisticated estimators of A(λ). Variance reduc-

tion means searching for alternatives with (hopefully) less statistical error. For

5Statisticians put a “hat” on a quantity to indicate a statistical estimate of it. In this way,

the statistical estimate of B is B̂.
6Ask A.C. for a joke with this punch line.
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example, if we could sample (X,Y ) pairs from the 6 dimensional probability
density

g(x, y) = Const · f(x)f(y)
|x− y|

, (6)

then

A(λ) =
(

4π
3

)2

Eg

[
e−λ|X−Y |

]
. (7)

This might give more accurate estimates of A for the same number of samples
because the random variable in (??) does not have a singularity when X = Y ,
in contrast to (??). This is an example of importance sampling. It is harder to
create samples from the density (??) than to sample X and Y from f indepen-
dently. Powerful sampling methods such as rejection and Markov chain Monte
Carlo (MCMC) will be very handy.

The simple estimator (??),(??) is unbiased, which means thatB(λ) = E[B̂(λ)].
Many estimators have bias as well as statistical error. For example, since A(λ)
is a nonlinear function of λ, an estimator, λ̂∗, of λ∗ with A(λ∗) = 1

2 probably
has bias (as we will see)

bias = E[λ∗]− E[λ̂∗] = O

(
1
L

)
.

There may be a tradeoff between statistical error and bias. For example,
(??),(??) has statistical error A(λ) − Â(λ) = O

(
1/
√
L
)

. The finite difference
estimator of A′ = dA/dλ,

Â′(λ) =
Â(λ+ ∆λ)− Â(λ)

∆λ
, (8)

has bias

E
[
Â′
]
−A′ =

A(λ+ ∆λ)−A(λ)
∆λ

−A′(λ) = O(∆λ) .

Assuming Â(λ+∆λ) and Â(λ) have independent statistical error, the statistical
error of Â′ is on the order of

√
L/∆λ. Altogether, we minimize the total error

by (setting all constants equal to one)

min
∆λ

(bias + noise) = min
∆λ

(
∆λ+

1
∆λ
√
L

)
=

1
L1/4

.

Sensitivity analysis is a branch of Monte Carlo that can improve this situation.
For example, from (??) we find

A′(λ) = −
(

4
3π

)2

Eg

[
|X − Y | e−λ|X−Y |

]
. (9)

Estimating A′ in the straightforward way using (??) leads to zero bias and
statistical error of the order of

√
L, which is much better.
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2 Background

The prerequisites for the class are a course on stochastic processes (Stochastic
Calculus at the Courant Institute) and some experience with scientific comput-
ing at the level of our Scientific Computing class. We will use linear algebra
and multivariate calculus at the level of the Courant Institute beginning classes.
The discussion will be as informal mathematically as possible.

Random variables generally are denoted by capitol letters, X, Y , T , etc.,
with specific values denoted by lower case: x, y, t, etc. A random element of Rn

would be called a random vector or a multivariate random variable and could
be written X = (X1, . . . , Xn). We have a scalar random variable when n = 1.
The probability density for X might be called f(x), so that

P (A) = P (X ∈ A) =
∫
A

f(x)dx . (10)

Here P (A) is the probability of the event A ⊆ Rn. The expected value of X
with the law f is

Ef [X] =
∫
Rn

xf(x)dx .

We write E[·] for Ef [·] when the f is clear. In one dimension it may be clearer
to use old fashion differential notation

P (x ≤ X ≤ x+ dx) = f(x)dx . (11)

Here the event A is the small interval (x, x + dx). The numbers P (A) form a
probability measure even if they are not given in terms of a density as in (1.1).
The law of a random variable either is its probability density or its probability
measure. We write X ∼ f or X ∼ P to indicate that X has the law given by
f or P . The vector notation above notwithstanding, we often write Xk ∼ f
to indicate a sequence random variables each with the law f . If Xk ∈ Rn,
we can indicate vector components by Xk = (Xk1, . . . , Xkn). We say the Xk

are samples of the law f or samples of the random variable X. Monte Carlo
computations involve thousands or millions of samples.

A standard uniform random variable is a scalar, U , with probability density
f(u) = 1 for 0 ≤ u ≤ 1 and f(u) = 0 otherwise. A pseudo random number
generator is a piece of computer code that produces a sequence Uk, k = 1, 2, . . .,
that resembles a sequence of independent samples of a standard uniform. This
is not to be confused with quasi random numbers which are deliberately not
random, in an attempt to be more uniform than actual random numbers. The
term “pseudo random” indicates that the output of the pseudo random num-
ber generator is not actually random. If you run the pseudo random number
generator twice, with the same seed (see a later lecture for a more technical
discussion), you will get the same Uk.

The central limit theorem underlies much Monte Carlo error analysis. The
simplest case is Y1, . . ., YL, independent samples of a scalar random variable,
Y with E[Y ] = 0 and E[Y 2] = σ2

Y . The theorem is that the law of ZL =
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L−1/2
∑L
k=1 Yk converges to a Gaussian law with mean zero and variance σ2

Y as
L→∞. The next case is a multivariate random variable, Y with mean zero and
covariance CY = E[Y Y t]. The law of ZL converges to a multivariate normal
with mean zero and covariance CY .

Wick’s theorem is a recipe that evaluates any moment of a multivariate
normal. Suppose l1(Y ), . . ., l2m(Y ) are an even number of linear functionals.7

A pairing is a collection of m pairs {{j1, k1} , · · · , {jm, km}}, so that each of the
numbers 1, . . . , 2m appears exactly once. Reordering the pairs or exchanging
the numbers in a pair gives the same pairing. The pairings of {1, 2, 3, 4} are
{{1, 2} , {3, 4}}, {{1, 3} , {2, 4}}, and {{1, 4} , {2, 3}}. The number of pairings of
2m numbers is8 (2m − 1)(2m − 3) · · · 3. Wick’s theorem states that if Y is a
mean zero multivariate normal, then

E [l1(Y ) · · · · · l2m(Y )] =
∑

pairings

E [lj1(Y )lk1(Y )] · · · · · E [ljm(Y )lkm
(Y )] (12)

An example illustrates many features of this formula. Let (Y1, Y2) be a mean
zero bivariate normal with var(Y1) = 2, var(Y2) = 5, and cov(Y1, Y2) = 3, then
corresponding to the three pairings above, we have the three terms

E
[
Y 2

1 Y
2
2

]
= E [Y1 · Y1 · Y2 · Y2]
= E [Y1Y1]E [Y2Y2] + E [Y1Y2]E [Y1Y2] + E [Y1Y2]E [Y1Y2]
= 2 · 5 + 3 · 3 + 3 · 3
= 33 .

The last two terms in the sum are the same but correspond to the distinct
pairings {{1, 3} , {2, 4}} and {{1, 4} , {2, 3}}. All the terms on the right are given
by covariances, which illustrates the general fact that a Gaussian is determined
by its mean and covariance matrix. This example used row vectors l1 = l2 =
(1, 0) and l3 = l4 = (0, 1). For more complicated row vectors, we have the
formula (which the reader should verify)

E[l1(Y )l2(Y )] = l1Cl
t
2 ,

where C is the covariance matrix of Y . For a scalar mean zero Gaussian, all
pairings give the same contribution, so

E[X4] = 3σ4
X , E[X6] = 15σ6

X , E[X8] = 105σ8
X , etc.

One of the proofs of the central limit theorem also explains Wick’s theorem.
If a mean zero random variable satisfies Wick’s theorem, then all its moments

7A linear functional is a scalar linear function of Y . If Y is a column vector, l(Y ) can be
represented as l · Y , for some row vector, also called l. Scalar functions, particularly of high
or infinite dimensional variables, often are called functionals.

8Number one chooses a partner from among the 2m− 1 other numbers. This is the factor
2m−1. Then the lowest as yet unpaired number chooses a partner from the 2m−3 remaining
numbers, and so on.
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are the same as the Gaussian moments so it is Gaussian9. We take a concrete
case:

E[l1(Zl) · · · · · l4(ZL)]→ (Wick formula) as L→∞.

To evaluate the sum, we use a different summation index for each factor j =
1, 2, 3, 4:

lj(ZL) =
1√
L

L∑
kj=1

lj(Ykj ) .

so that

E [l1(ZL)l2(ZL)l3(ZL)l4(ZL)]

=
1
L2

L∑
k1=1

L∑
k2=1

L∑
k3=1

L∑
k4=1

E[l1(Yk1)l2(Yk2)l3(Yk3)l4(Yk4)]

Most of the expectations on the right side are zero. For example, if k1 6= k2,
k1 6= k3, and k1 6= k4 then l1(Yk1) has mean zero and is independent of the
other l(Y ) factors so E[l1(Yk1)l2(Yk2)l3(Yk3)l4(Yk4)] = 0. To get a nonzero
expectation, each term must be paired with at least one other. For example,
the pairing {{1, 3} , {2, 4}} corresponds to possibly nonzero terms with k1 = k3

and k2 = k4: E[l1(Yk1)l2(Yk2)l3(Yk1)l4(Yk2)].
If k1 6= k2 then Yk1 and Yk2 are independent, and we get a Wick type

contribution:

E[l1(Yk1)l2(Yk2)l3(Yk1)l4(Yk2)] = E[l1(Yk1)l3(Yk1)]E[l2(Yk2)l4(Yk2)]
=

(
l1Cl

t
3

)(
l2Cl

t
4

)
.

There are L(L−1) such terms. The L remaining terms have k1 = k2 = k3 = k4.
Altogether,

E [l1(ZL)l2(ZL)l3(ZL)l4(ZL)]

=
L(L− 1)

L2

{(
l1Cl

t
2

)(
l3Cl

t
4

)
+
(
l1Cl

t
3

)(
l2Cl

t
4

)
+
(
l1Cl

t
4

)(
l2Cl

t
3

)}
+

L

L2
E[l1(Y )l2(Y )l3(Y )l4(Y )] .

The first term on the right converges to the Wick formula as L→∞ while the
second converges to zero.

This argument has drawbacks as a proof of the central limit theorem. It
requires Y to have finite moments (e.g. so that the last term above is finite).
It relies on the moment problem, which, at a minimum, is more sophisticated
than this. It does not answer questions about convergence of the distribution
of ZL other than moments. However, if you believe the central limit theorem
already and just want Wick’s formula, take Y to be Gaussian.

9The justification of this statement is an easy case of the moment problem, showing that
two probability laws with the same moments are the same.
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Here is an example of the multivariate central limit theorem that comes
up in the theory of time stepping methods for stochastic differential equations.
Suppose X ∼ N (0, 1) and we define a three component random variable Y
as Yk = (X2 − 1, X3, X4 − 3)t. The Y variances (handily computed using
Wick’s theorem) are C11 = 2, C22 = 15 and C33 = 96. The off diagonal
covariances all are zero except C13 = 12. Note that although Y1 and Y2 are
uncorrelated (C12 = 0), they are far from independent. In fact, if we know Y1,
then X = ±

√
Y1 + 1: If we know Y1 then we know everything about Y2 except

the sign. Nevertheless, if we have L independent X samples then the random
variables

ZL,1 =
1√
L

L∑
k=1

(
X2
k − 1

)
, ZL,2 =

1√
L

L∑
k=1

X3
k

are nearly independent Gaussians for large L.
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