Lecture Notes on Monte Carlo Methods
Fall Semester, 2007
Courant Institute of Mathematical Sciences, NYU
Jonathan Goodman, goodman@cims.nyu.edu

Introduction

created September 19, 2007
This is a set of lecture notes for a graduate class on Monte Carlo methods given at the Courant Institute of Mathematical Sciences at NYU in the fall of 2005 and again in 2007. During these years important new techniques and applications emerged. At the same time, most basic introductions to Monte Carlo are specialized for one of the application disciplines. These notes attempt to present Monte Carlo principles and methods in a way that will be useful to people from many disciplines. I hope to express ideas from the various Monte Carlo communities in a common mathematical language so that people from each discipline can use tricks invented for other applications. Given the variety of people using Monte Carlo and the range of application areas, it is surprising how far one can go in this way.

Roughly speaking, Monte Carlo ${ }^{1}$ means computing using random numbers. It is helpful to refine this definition and distinguish between true Monte Carlo and simulation. We take simulation to mean generating individual random objects faithfully according to some model. For example, we might want to see what shape clouds come from a specific model of cloud formation that involves randomness. The point of simulation might not be gather detailed statistics, but just to see what a few random objects look like.

By contrast ${ }^{2}$, Monte Carlo uses random numbers as a means to evaluate quantities that themselves are not random. For example, suppose $f(x)$ is the probability density for a one dimensional random variable, X. One way to evaluate ${ }^{3} A=E[X]$ is to generate many samples (random variables X_{k} with probability density f) and average them. More generally, we could generate a number of random objects (e.g. clouds) and collect interesting statistics about them. The difference is that the expected value of X or of some more complex statistic is a property of a random variable but is not itself random. Therefore, it may be possible to evaluate A without generating random samples with probability density $f(x)$. For example, we could estimate $A=\int x f(x) d x$ by numerical quadrature. Estimating A by averaging many X_{k} would be called plain simulation. Practitioners often find clever methods that are better (faster or more accurate). Simulation is mostly programming, but Monte Carlo is all about devising and understanding new computational strategies. Each piece of creativity will improve your results.

[^0]When choosing a Monte Carlo method for a given problem, one should have a strong bias against Monte Carlo at all. A practical deterministic method almost always is better than Monte Carlo. If you have an integral in fewer than, say, four variables, do it by deterministic quadrature. If you have a Markov chain with less than a thousand states or a diffusion process in less than four dimensions, use a backward equation. The statistical error in Monte Carlo is at least $O(1 / \sqrt{L})$ (which isn't very small), where L is the number of samples ${ }^{4}$ It is a rare deterministic method that is worse than this.

Keep this in mind when reading these notes or other Monte Carlo books. We authors often use one dimensional examples to illustrate specific principles although we know that this is not the fastest or most accurate way to compute a one dimensional integral. The real world is full of problems where Monte Carlo is the method of choice.

1 Overview

An example will illustrate the themes discussed in these notes. One part of a physics problem reduces to calculating the integral

$$
\begin{equation*}
A(\lambda)=\int_{|x|<1} \int_{|y|<1} \frac{e^{-\lambda|x-y|}}{|x-y|} d x d y \tag{1}
\end{equation*}
$$

or, more generally, the integrals

$$
\begin{equation*}
A_{n}(\lambda)=\int_{\left|x_{1}\right|<1} \cdots \int_{\left|x_{n}\right|<1} \frac{e^{-\lambda\left|x_{1}-x_{2}\right|}}{\left|x_{1}-x_{2}\right|} \cdots \frac{e^{-\lambda\left|x_{n-1}-x_{n}\right|}}{\left|x_{n-1}-x_{n}\right|} d x_{1} \cdots d x_{n} \tag{2}
\end{equation*}
$$

Here, the variables x, y, and the x_{k} all are in R^{3}. The integral (??) is a six dimensional integral (maybe reducible to five or even four dimensions), which makes direct quadrature difficult. The integral (??) is in $3 n$ (or $3 n-1$) dimensions, which makes quadrature completely impractical. The problem is first to calculate $A(\lambda)$ for various λ values and next to find λ_{*} that gives $A\left(\lambda_{*}\right)=\frac{1}{2}$.

The first step in evaluating $A(\lambda)$ by Monte Carlo is to express it in terms of the expected value of a random variable. We express A as

$$
\begin{equation*}
A(\lambda)=\text { Const } \cdot E_{\lambda}[Z] . \tag{3}
\end{equation*}
$$

The $E_{\lambda}[\cdot]$ on the right means that the probability distribution of Z depends on λ. For example, we could let X and Y be independent random variables with uniform probability density in the unit ball $B=\left\{x \in R^{3}\right.$ with $\left.|x|<1\right\}$. This probability density is (recall that the volume of B is $\frac{4}{3} \pi$)

$$
f(x)= \begin{cases}\frac{3}{4 \pi} & \text { if } x \in B \\ 0 & \text { otherwise }\end{cases}
$$

[^1]Then multiplying and dividing by the normalizing $\frac{4}{3} \pi$ gives

$$
\begin{aligned}
A(\lambda) & =\left(\frac{4 \pi}{3}\right)^{2} \iint \frac{e^{-\lambda|x-y|}}{|x-y|} f(x) f(y) d x d y \\
& =\left(\frac{4 \pi}{3}\right)^{2} E\left[\frac{e^{-\lambda|X-Y|}}{|X-Y|}\right] \\
& =\left(\frac{4 \pi}{3}\right)^{2} E[Z]
\end{aligned}
$$

where

$$
\begin{equation*}
Z=\frac{e^{-\lambda|X-Y|}}{|X-Y|} \tag{4}
\end{equation*}
$$

We do not have a formula for the probability density of Z, but we can generate a random sample of it by choosing X and Y independently in B then applying (3).

To evaluate $A(\lambda)$, we generate L independent Z samples, Z_{1}, \ldots, Z_{L}, and use the estimator ${ }^{5}$

$$
\begin{equation*}
A=\left(\frac{4 \pi}{3}\right)^{2} E[Z] \approx \widehat{A}(\lambda)=\left(\frac{4 \pi}{3}\right)^{2} \frac{1}{L} \sum_{k=1}^{L} Z_{k} \tag{5}
\end{equation*}
$$

The law of large numbers states that $\widehat{A} \rightarrow A$ as $L \rightarrow \infty$. It may take quite a large L, and lots of computer time, to get \widehat{A} close enough to A to satisfy us. Computational error bars tell us how far \widehat{A} is likely to be from A. We will follow the statistician's habit of expressing this with a confidence interval. For example, we might say that the probability that A is not between $\widehat{A}-r$ and $\widehat{A}+r$ is about 5%. It is not always necessary to present the error bars to the consumers of your results, just as you don't show them how you debugged and tested your computer code. A Monte Carlo practitioner who skips testing or neglects error bars deserves to get the wrong answer, and will.

We could compute $\widehat{A}\left(\lambda_{j}\right)$ for a few λ_{j} by doing separate runs for each value of λ, but many applications demand more than that. We want to know the function $A(\lambda)$, the shape of its graph, its derivatives, the inverse function, etc. The statistical noise in the estimators $\widehat{A}\left(\lambda_{j}\right)$ may be amplified in finding this other properties of $A(\lambda)$. There often are better ways ${ }^{6}$. Sensitivity analysis provides estimates for derivatives of $A(\lambda)$ having less noise than the naive finite difference (see below). Stochastic approximation provides more sophisticated ways to find solutions of equations such as $A(\lambda)=\frac{1}{2}$.

There are other more sophisticated estimators of $A(\lambda)$. Variance reduction means searching for alternatives with (hopefully) less statistical error. For

[^2]example, if we could sample (X, Y) pairs from the 6 dimensional probability density
\[

$$
\begin{equation*}
g(x, y)=\text { Const } \cdot \frac{f(x) f(y)}{|x-y|} \tag{6}
\end{equation*}
$$

\]

then

$$
\begin{equation*}
A(\lambda)=\left(\frac{4 \pi}{3}\right)^{2} E_{g}\left[e^{-\lambda|X-Y|}\right] \tag{7}
\end{equation*}
$$

This might give more accurate estimates of A for the same number of samples because the random variable in (??) does not have a singularity when $X=Y$, in contrast to (??). This is an example of importance sampling. It is harder to create samples from the density (??) than to sample X and Y from f independently. Powerful sampling methods such as rejection and Markov chain Monte Carlo (MCMC) will be very handy.

The simple estimator (??),(??) is unbiased, which means that $B(\lambda)=E[\widehat{B}(\lambda)]$. Many estimators have bias as well as statistical error. For example, since $A(\lambda)$ is a nonlinear function of λ, an estimator, $\widehat{\lambda_{*}}$, of λ_{*} with $A\left(\lambda_{*}\right)=\frac{1}{2}$ probably has bias (as we will see)

$$
\text { bias }=E\left[\lambda_{*}\right]-E\left[\widehat{\lambda_{*}}\right]=O\left(\frac{1}{L}\right)
$$

There may be a tradeoff between statistical error and bias. For example, $(? ?),(? ?)$ has statistical error $A(\lambda)-\widehat{A}(\lambda)=O(1 / \sqrt{L})$. The finite difference estimator of $A^{\prime}=d A / d \lambda$,

$$
\begin{equation*}
\widehat{A^{\prime}}(\lambda)=\frac{\widehat{A}(\lambda+\Delta \lambda)-\widehat{A}(\lambda)}{\Delta \lambda} \tag{8}
\end{equation*}
$$

has bias

$$
E\left[\widehat{A^{\prime}}\right]-A^{\prime}=\frac{A(\lambda+\Delta \lambda)-A(\lambda)}{\Delta \lambda}-A^{\prime}(\lambda)=O(\Delta \lambda)
$$

Assuming $\widehat{A}(\lambda+\Delta \lambda)$ and $\widehat{A}(\lambda)$ have independent statistical error, the statistical error of $\widehat{A^{\prime}}$ is on the order of $\sqrt{L} / \Delta \lambda$. Altogether, we minimize the total error by (setting all constants equal to one)

$$
\min _{\Delta \lambda}(\text { bias }+ \text { noise })=\min _{\Delta \lambda}\left(\Delta \lambda+\frac{1}{\Delta \lambda \sqrt{L}}\right)=\frac{1}{L^{1 / 4}} .
$$

Sensitivity analysis is a branch of Monte Carlo that can improve this situation. For example, from (??) we find

$$
\begin{equation*}
A^{\prime}(\lambda)=-\left(\frac{4}{3 \pi}\right)^{2} E_{g}\left[|X-Y| e^{-\lambda|X-Y|}\right] \tag{9}
\end{equation*}
$$

Estimating A^{\prime} in the straightforward way using (??) leads to zero bias and statistical error of the order of \sqrt{L}, which is much better.

2 Background

The prerequisites for the class are a course on stochastic processes (Stochastic Calculus at the Courant Institute) and some experience with scientific computing at the level of our Scientific Computing class. We will use linear algebra and multivariate calculus at the level of the Courant Institute beginning classes. The discussion will be as informal mathematically as possible.

Random variables generally are denoted by capitol letters, X, Y, T, etc., with specific values denoted by lower case: x, y, t, etc. A random element of R^{n} would be called a random vector or a multivariate random variable and could be written $X=\left(X_{1}, \ldots, X_{n}\right)$. We have a scalar random variable when $n=1$. The probability density for X might be called $f(x)$, so that

$$
\begin{equation*}
P(A)=P(X \in A)=\int_{A} f(x) d x \tag{10}
\end{equation*}
$$

Here $P(A)$ is the probability of the event $A \subseteq R^{n}$. The expected value of X with the law f is

$$
E_{f}[X]=\int_{R^{n}} x f(x) d x
$$

We write $E[\cdot]$ for $E_{f}[\cdot]$ when the f is clear. In one dimension it may be clearer to use old fashion differential notation

$$
\begin{equation*}
P(x \leq X \leq x+d x)=f(x) d x \tag{11}
\end{equation*}
$$

Here the event A is the small interval $(x, x+d x)$. The numbers $P(A)$ form a probability measure even if they are not given in terms of a density as in (1.1). The law of a random variable either is its probability density or its probability measure. We write $X \sim f$ or $X \sim P$ to indicate that X has the law given by f or P. The vector notation above notwithstanding, we often write $X_{k} \sim f$ to indicate a sequence random variables each with the law f. If $X_{k} \in R^{n}$, we can indicate vector components by $X_{k}=\left(X_{k 1}, \ldots, X_{k n}\right)$. We say the X_{k} are samples of the law f or samples of the random variable X. Monte Carlo computations involve thousands or millions of samples.

A standard uniform random variable is a scalar, U, with probability density $f(u)=1$ for $0 \leq u \leq 1$ and $f(u)=0$ otherwise. A pseudo random number generator is a piece of computer code that produces a sequence $U_{k}, k=1,2, \ldots$, that resembles a sequence of independent samples of a standard uniform. This is not to be confused with quasi random numbers which are deliberately not random, in an attempt to be more uniform than actual random numbers. The term "pseudo random" indicates that the output of the pseudo random number generator is not actually random. If you run the pseudo random number generator twice, with the same seed (see a later lecture for a more technical discussion), you will get the same U_{k}.

The central limit theorem underlies much Monte Carlo error analysis. The simplest case is Y_{1}, \ldots, Y_{L}, independent samples of a scalar random variable, Y with $E[Y]=0$ and $E\left[Y^{2}\right]=\sigma_{Y}^{2}$. The theorem is that the law of $Z_{L}=$
$L^{-1 / 2} \sum_{k=1}^{L} Y_{k}$ converges to a Gaussian law with mean zero and variance σ_{Y}^{2} as $L \rightarrow \infty$. The next case is a multivariate random variable, Y with mean zero and covariance $C_{Y}=E\left[Y Y^{t}\right]$. The law of Z_{L} converges to a multivariate normal with mean zero and covariance C_{Y}.

Wick's theorem is a recipe that evaluates any moment of a multivariate normal. Suppose $l_{1}(Y), \ldots, l_{2 m}(Y)$ are an even number of linear functionals. ${ }^{7}$ A pairing is a collection of m pairs $\left\{\left\{j_{1}, k_{1}\right\}, \cdots,\left\{j_{m}, k_{m}\right\}\right\}$, so that each of the numbers $1, \ldots, 2 m$ appears exactly once. Reordering the pairs or exchanging the numbers in a pair gives the same pairing. The pairings of $\{1,2,3,4\}$ are $\{\{1,2\},\{3,4\}\},\{\{1,3\},\{2,4\}\}$, and $\{\{1,4\},\{2,3\}\}$. The number of pairings of $2 m$ numbers is ${ }^{8}(2 m-1)(2 m-3) \cdots 3$. Wick's theorem states that if Y is a mean zero multivariate normal, then

$$
\begin{equation*}
E\left[l_{1}(Y) \cdots l_{2 m}(Y)\right]=\sum_{\text {pairings }} E\left[l_{j_{1}}(Y) l_{k_{1}}(Y)\right] \cdots E\left[l_{j_{m}}(Y) l_{k_{m}}(Y)\right] \tag{12}
\end{equation*}
$$

An example illustrates many features of this formula. Let $\left(Y_{1}, Y_{2}\right)$ be a mean zero bivariate normal with $\operatorname{var}\left(Y_{1}\right)=2$, $\operatorname{var}\left(Y_{2}\right)=5$, and $\operatorname{cov}\left(Y_{1}, Y_{2}\right)=3$, then corresponding to the three pairings above, we have the three terms

$$
\begin{aligned}
E\left[Y_{1}^{2} Y_{2}^{2}\right] & =E\left[Y_{1} \cdot Y_{1} \cdot Y_{2} \cdot Y_{2}\right] \\
& =E\left[Y_{1} Y_{1}\right] E\left[Y_{2} Y_{2}\right]+E\left[Y_{1} Y_{2}\right] E\left[Y_{1} Y_{2}\right]+E\left[Y_{1} Y_{2}\right] E\left[Y_{1} Y_{2}\right] \\
& =2 \cdot 5+3 \cdot 3+3 \cdot 3 \\
& =33
\end{aligned}
$$

The last two terms in the sum are the same but correspond to the distinct pairings $\{\{1,3\},\{2,4\}\}$ and $\{\{1,4\},\{2,3\}\}$. All the terms on the right are given by covariances, which illustrates the general fact that a Gaussian is determined by its mean and covariance matrix. This example used row vectors $l_{1}=l_{2}=$ $(1,0)$ and $l_{3}=l_{4}=(0,1)$. For more complicated row vectors, we have the formula (which the reader should verify)

$$
E\left[l_{1}(Y) l_{2}(Y)\right]=l_{1} C l_{2}^{t}
$$

where C is the covariance matrix of Y. For a scalar mean zero Gaussian, all pairings give the same contribution, so

$$
E\left[X^{4}\right]=3 \sigma_{X}^{4}, \quad E\left[X^{6}\right]=15 \sigma_{X}^{6}, \quad E\left[X^{8}\right]=105 \sigma_{X}^{8}, \text { etc. }
$$

One of the proofs of the central limit theorem also explains Wick's theorem. If a mean zero random variable satisfies Wick's theorem, then all its moments

[^3]are the same as the Gaussian moments so it is Gaussian ${ }^{9}$. We take a concrete case:
$$
E\left[l_{1}\left(Z_{l}\right) \cdots l_{4}\left(Z_{L}\right)\right] \rightarrow(\text { Wick formula) } \quad \text { as } L \rightarrow \infty
$$

To evaluate the sum, we use a different summation index for each factor $j=$ $1,2,3,4$:

$$
l_{j}\left(Z_{L}\right)=\frac{1}{\sqrt{L}} \sum_{k_{j}=1}^{L} l_{j}\left(Y_{k_{j}}\right) .
$$

so that

$$
\begin{aligned}
E & {\left[l_{1}\left(Z_{L}\right) l_{2}\left(Z_{L}\right) l_{3}\left(Z_{L}\right) l_{4}\left(Z_{L}\right)\right] } \\
& =\frac{1}{L^{2}} \sum_{k_{1}=1}^{L} \sum_{k_{2}=1}^{L} \sum_{k_{3}=1}^{L} \sum_{k_{4}=1}^{L} E\left[l_{1}\left(Y_{k_{1}}\right) l_{2}\left(Y_{k_{2}}\right) l_{3}\left(Y_{k_{3}}\right) l_{4}\left(Y_{k_{4}}\right)\right]
\end{aligned}
$$

Most of the expectations on the right side are zero. For example, if $k_{1} \neq k_{2}$, $k_{1} \neq k_{3}$, and $k_{1} \neq k_{4}$ then $l_{1}\left(Y_{k_{1}}\right)$ has mean zero and is independent of the other $l(Y)$ factors so $E\left[l_{1}\left(Y_{k_{1}}\right) l_{2}\left(Y_{k_{2}}\right) l_{3}\left(Y_{k_{3}}\right) l_{4}\left(Y_{k_{4}}\right)\right]=0$. To get a nonzero expectation, each term must be paired with at least one other. For example, the pairing $\{\{1,3\},\{2,4\}\}$ corresponds to possibly nonzero terms with $k_{1}=k_{3}$ and $k_{2}=k_{4}: E\left[l_{1}\left(Y_{k_{1}}\right) l_{2}\left(Y_{k_{2}}\right) l_{3}\left(Y_{k_{1}}\right) l_{4}\left(Y_{k_{2}}\right)\right]$.

If $k_{1} \neq k_{2}$ then $Y_{k_{1}}$ and $Y_{k_{2}}$ are independent, and we get a Wick type contribution:

$$
\begin{aligned}
E\left[l_{1}\left(Y_{k_{1}}\right) l_{2}\left(Y_{k_{2}}\right) l_{3}\left(Y_{k_{1}}\right) l_{4}\left(Y_{k_{2}}\right)\right] & =E\left[l_{1}\left(Y_{k_{1}}\right) l_{3}\left(Y_{k_{1}}\right)\right] E\left[l_{2}\left(Y_{k_{2}}\right) l_{4}\left(Y_{k_{2}}\right)\right] \\
& =\left(l_{1} C l_{3}^{t}\right)\left(l_{2} C l_{4}^{t}\right)
\end{aligned}
$$

There are $L(L-1)$ such terms. The L remaining terms have $k_{1}=k_{2}=k_{3}=k_{4}$. Altogether,

$$
\begin{aligned}
& E\left[l_{1}\left(Z_{L}\right) l_{2}\left(Z_{L}\right) l_{3}\left(Z_{L}\right) l_{4}\left(Z_{L}\right)\right] \\
& = \\
& \quad \frac{L(L-1)}{L^{2}}\left\{\left(l_{1} C l_{2}^{t}\right)\left(l_{3} C l_{4}^{t}\right)+\left(l_{1} C l_{3}^{t}\right)\left(l_{2} C l_{4}^{t}\right)+\left(l_{1} C l_{4}^{t}\right)\left(l_{2} C l_{3}^{t}\right)\right\} \\
& \\
& \\
& \quad+\frac{L}{L^{2}} E\left[l_{1}(Y) l_{2}(Y) l_{3}(Y) l_{4}(Y)\right] .
\end{aligned}
$$

The first term on the right converges to the Wick formula as $L \rightarrow \infty$ while the second converges to zero.

This argument has drawbacks as a proof of the central limit theorem. It requires Y to have finite moments (e.g. so that the last term above is finite). It relies on the moment problem, which, at a minimum, is more sophisticated than this. It does not answer questions about convergence of the distribution of Z_{L} other than moments. However, if you believe the central limit theorem already and just want Wick's formula, take Y to be Gaussian.

[^4]Here is an example of the multivariate central limit theorem that comes up in the theory of time stepping methods for stochastic differential equations. Suppose $X \sim \mathcal{N}(0,1)$ and we define a three component random variable Y as $Y_{k}=\left(X^{2}-1, X^{3}, X^{4}-3\right)^{t}$. The Y variances (handily computed using Wick's theorem) are $C_{11}=2, C_{22}=15$ and $C_{33}=96$. The off diagonal covariances all are zero except $C_{13}=12$. Note that although Y_{1} and Y_{2} are uncorrelated $\left(C_{12}=0\right)$, they are far from independent. In fact, if we know Y_{1}, then $X= \pm \sqrt{Y_{1}+1}$: If we know Y_{1} then we know everything about Y_{2} except the sign. Nevertheless, if we have L independent X samples then the random variables

$$
Z_{L, 1}=\frac{1}{\sqrt{L}} \sum_{k=1}^{L}\left(X_{k}^{2}-1\right) \quad, \quad Z_{L, 2}=\frac{1}{\sqrt{L}} \sum_{k=1}^{L} X_{k}^{3}
$$

are nearly independent Gaussians for large L.

[^0]: ${ }^{1}$ Monte Carlo is the capital of the tiny country Monaco and is a gambling center of Europe. Random numbers are important there too.
 ${ }^{2}$ This distinction was formulated in the text by Kalos and Whitlock.
 ${ }^{3}$ See the next section for basic definitions and notation.

[^1]: ${ }^{4}$ We use L for the number of samples, the run length so that n always can be the number of components of a multivariate random variable.

[^2]: ${ }^{5}$ Statisticians put a "hat" on a quantity to indicate a statistical estimate of it. In this way, the statistical estimate of B is \widehat{B}.
 ${ }^{6}$ Ask A.C. for a joke with this punch line.

[^3]: ${ }^{7} \mathrm{~A}$ linear functional is a scalar linear function of Y. If Y is a column vector, $l(Y)$ can be represented as $l \cdot Y$, for some row vector, also called l. Scalar functions, particularly of high or infinite dimensional variables, often are called functionals.
 ${ }^{8}$ Number one chooses a partner from among the $2 m-1$ other numbers. This is the factor $2 m-1$. Then the lowest as yet unpaired number chooses a partner from the $2 m-3$ remaining numbers, and so on.

[^4]: ${ }^{9}$ The justification of this statement is an easy case of the moment problem, showing that two probability laws with the same moments are the same.

