
Monte Carlo Methods, Fall 2007, Courant Institute, NYU
Homework 4, Due November 34

1. Verify that the “move the first of two rods” transition measure ((6) in the
notes) satisfies the detailed balance condition ((14) in the notes). Part
of the problem is writing an expression for f(x1, x2), the uniform density
subject to the constraints that the rods not overlap.

2. Develop the basic theory of the Metropolis Hastings algorithm for contin-
uous random variables. Suppose that for each x, T (x, y) is a probability
density with respect to y. Suppose that R(x, y) ∈ [0, 1] for all x and y.

(a) Write an expression for the transition “density”, p(x, y) that cor-
responds to proposing y ∼ T (x, y) and accepting with probability
R(x, y). This p has a continuous density part and a δ−function part.

(b) What formula for R leads to P satisfying the detailed balance con-
dition ((14) in the notes) with respect to a given density, f . This
formula should be familiar.

3. Suppose H(x) is an smooth energy function that depends on a continu-
ous multi-component variable, x, and that we want to sample the Gibbs
Boltzmann probability density

f(x) =
1

Z(T )
e−H(x)/kT . (1)

One dynamic sampler is based on (misnamed) Langevin dynamics, which
is the SDE

dX = −∇H(X)dt +
√

2kTdW . (2)

The intuition behind this is that the drift term tends to move X toward
smaller energy values while the noise term can increase or decrease the
energy. The larger the noise coefficient, the less the system insists on
keeping the energy small. The forward equation for the probability density,
f(x, t), of X(t) is

∂tf = ∇ ·
(
b2

2
∇f − a(x)f

)
= L∗f , (3)

if dX = a(X)dt+ bdW .

(a) Find the operator L so that

〈L∗g, u〉L2 = 〈g, Lu〉L2

for all g and u.
(b) Show that the L corresponding to (2) is self-adjoint with respect to

the inner product 〈u, v〉f , with f the Gibbs-Boltzmann distribution
(1). This shows that the dynamics (2) satisfies detailed balance with
respect to the probability density (1). The noise coefficient

√
2kT is

needed to make this work.
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(c) Verify directly that the probability density (1) is the steady state
density for the process (2) because it satisfies L∗f = 0. Hint: Show
the quantity in parentheses vanishes.

(d) The Euler approximation to (2) has a Gaussian transition probability,
T (x, y). Show that (1) is not the invariant probability density for the
discrete time Markov chain with transition probability T . Hint: for
smal h, you can calculate (fT )(x) = f(x) + hpg(x) + O(hp+1). The
formula for g involves 4th derivatives of f , so it will may better not
to write it in terms of H. All that is important here is that it is not
equal to zero.

(e) Describe a Metropolis style algorithm for sampling (1) exactly that
uses the Euler transition density T as a trial transition probability
for ejection.

4. Let ~X = (Xn, . . . , Xn) with the Xk distributed as in problem 7 of Home-
work 2, that is, independent with density g(x) = C

√
1− x2 subject to the

constraint that
∑
Xk > ns. Formally the density is (in awkward notation)

f(~x) =
1

Z(s, n)

∏
k

g(xk)1∑ xk>ns .

Cramer’s theorem tells us that sampling f by rejection from sequences of
independent samples (h(~x) =

∏
k g(xk) is exponentially hopeless.

(a) Write a sampler for f that works by sweeping through the compo-
nents replacing each Xk with an independent X ′k ∼ g and rejecting
any component replacement that results in

∑
Xk < ns.

(b) Explain why this simpler is correct.
(c) We are interested in the distribution of S = 1

n

∑
Xk given that S > s.

Use the sampler to make a histogram of the conditional S for s = .5
and n = 30. Compare this to the behavior predicted by Cramer’s
theorem. Make sure to choose the horizontal axis of the histogram
plot so that the plot fills the whole plot frame (i.e. does not look like
a horizontal line or a right angle).

(d) Explore how the acceptance probability for your component resam-
pler depends on n and s. Hint: it should be more or less independent
of n once n has any size, and it should deteriorate with increasing s
but not be terribly small except for extreme s.

(e) Make (and plot) a histogram of the conditional distribution of X1

conditional on S > s, for s = .5 and n = 30 (and other values
if interested). Compare this to the twisted distribution you used
in Homework 2. They should agree. It is a simple consequence of
Cramer theory that the conditional distribution is the twisted dis-
tribution. You will get a more accurate histogram if you use all the
components of ~X to make it. This is allowed because they all have
the same distribution.
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(f) We want to estimate E [S − s | S > s]. Cramer’s theorem (with our
approximate integration technique) predicts that this is O(1/n). Es-
timate it using the above sampler for interesting values of s and n
(Debugging a code is hard. Playing with it is easy.)

(g) Estimate the auto-correlation time using the method of batched means
and the self consistent window method ((31) in the notes). It should
be fine to take T = 10, so just put in a check that that’s OK. Keep
debugging until the two estimates of τ should agree.

(h) Plot the estimated auto-corremation function, Ĉ(t) and comment on
its sign. This may be different for different values of s and n. Look for
interesting behavior. Comment on the relation of this to the results
for part (g).
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