Mathematics of Finance, Courant Institute, Spring 2019
https://www.math.nyu.edu/faculty/goodman/teaching/MathFin2019/MathFinance.html

Linear Algebra, partial review

Linear relations

Linear algerbra is the algebra of linear relationships between variables. A linear relationship between x and y is $y=a x$, for some number a. The subject of linear algebra is linear relationships when there are many x and y variables. Suppose there are n variables x_{1}, \ldots, x_{n} and n coefficients a_{1}, \ldots, a_{n}. Then y is a linear function of x_{1}, \ldots, x_{n} if

$$
\begin{equation*}
y=\sum_{j=1}^{n} a_{j} x_{j}=a_{1} x_{1}+\cdots+a_{n} x_{n} \tag{1}
\end{equation*}
$$

This relationship may be described by saying that the variables x_{j} are factors that determine y and the coefficients a_{j} are factor loadings. The factor loading a_{j} determines how the individual factor x_{j} influences the outcome y.

Linear models like this are used all over. One example is the predictions Netflix makes about how much you will like a movie. The numbers x_{j} are numbers Netflix has on you, often called features. These might be ratings you have given other movies or your age, income (they know stuff), etc. The factor loadings are estimates of how much each factor influences your rating. Take a course on statistics or machine learning to find out how Netflix estimates the factor loadings.

There may be more than one y variable. For example, y_{i} could be the prediction of how much you will like movie i. Then each y variable would have its own factor loadings

$$
\begin{equation*}
y_{i}=a_{i 1} x_{1}+\cdots+a_{i n} x_{n}=\sum_{j=1}^{n} a_{i j} x_{j}, \quad i=1, \ldots, m \tag{2}
\end{equation*}
$$

The variables y_{j} are given in a linear way to, or related in a linear way from, the variables x_{i}.

It is possible to compose linear relations. (The word "compose" usually means "create", as in composing music, or "arrange", as in composing yourself after an argument. The mathematical "compose" is vaguely related to the second meaning.) Suppose there are l variables z_{k}, which are given in terms of y_{j} using factor loadings (coefficients) $b_{j k}$. This would be

$$
\begin{equation*}
z_{k}=\sum_{j=1}^{m} b_{k j} y_{j}, \quad \text { for } k=1, \ldots, l \tag{3}
\end{equation*}
$$

Each variable z_{k} has its factor loadings, $b_{k, 1}, \ldots, b_{k, m}$, from y_{j}. The variables z_{k} are indirectly determined by the variables x_{i}. The factor loadings $a_{i j}$ determine
y_{j}, then the factor loadings $b_{j k}$ determine z_{k}. The composite relation, which is the composition of the two relations (a simpler description is below). There are factor loadings $c_{k i}$ that determine the z_{k} directly from the x_{i} as

$$
z_{k}=\sum_{i=1}^{n} c_{k i} x_{i}
$$

The formula is

$$
\begin{equation*}
c_{k i}=\sum_{j=1}^{m} b_{k j} a_{j i} . \tag{4}
\end{equation*}
$$

This formula (derived below) makes sense because the j index in $b_{k j}$ runs from 1 to m and the j index in $a_{j i}$ also runs from 1 to m. You can see this from (2), where there is one sum for each variable y_{j}, and from (3), where the sum is over the m variables y_{j}.

As an example, suppose the $x \rightarrow y$ and $y \rightarrow z$ relations are

$$
\begin{aligned}
& y_{1}=2 x_{1}+3 x_{2}+4 x_{3} \\
& y_{2}=5 x_{1}+6 x_{2}+7 x_{3} \\
& z_{1}=8 y_{1}+9 y_{2} \\
& z_{2}=2 y_{1}+3 y_{2} .
\end{aligned}
$$

We can substitute the expressions for y_{j} into the expressions for z_{k} and get

$$
\begin{array}{rlr}
z_{1} & =8\left(2 x_{1}+3 x_{2}+4 x_{3}\right)+9\left(5 x_{1}+6 x_{2}+7 x_{3}\right) \\
& =(8 \cdot 2+9 \cdot 5) x_{1}+(8 \cdot 3+9 \cdot 6) x_{2}+(8 \cdot 4+9 \cdot 7) x_{3} \\
z_{1} & =61 x_{1}+\quad 95 x_{3}+ \\
z_{2} & =2\left(2 x_{1}+3 x_{2}+4 x_{3}\right)+3\left(5 x_{1}+6 x_{2}+7 x_{3}\right) \\
& =(2 \cdot 2+3 \cdot 5) x_{1}+(2 \cdot 3+3 \cdot 6) x_{2}+(2 \cdot 4+3 \cdot 7) x_{3} \\
z_{2} & =r 24 x_{2}+ & 29 x_{3}+
\end{array}
$$

The general formula (4) gives the same thing:

$$
\begin{aligned}
c_{11} & =b_{11} a_{11}+b_{12} a_{21} \\
& =8 \cdot 2+9 \cdot 5 \\
& =61 \\
c_{12} & =b_{11} a_{12}+b_{12} a_{22} \\
& =8 \cdot 3+9 \cdot 6 \\
& =78 \\
c_{21} & =b_{21} a_{11}+b_{22} a_{21} \\
& =2 \cdot 2+3 \cdot 5 \\
& =21
\end{aligned}
$$

etc.

This means that

$$
\begin{aligned}
z_{1} & =c_{11} x_{1}+c_{12} x_{2}+c_{13} x_{3} \\
& =61 x_{1}+78 x_{2}+95 x_{3} \\
z_{2} & =c_{21} x_{1}+c_{22} x_{2}+c_{23} x_{3} \\
& =21 x_{1}+24 x_{2}+29 x_{3} .
\end{aligned}
$$

In my long experience as a teacher and a mathematician, I've seen that going through numbers like this makes the concepts clearer than a "clean" abstract proof.

Here is the clean abstract proof of the composition relations (4).

$$
\begin{aligned}
z_{k} & =\sum_{j=1}^{m} b_{k j} y_{j} \\
& =\sum_{j=1}^{m} b_{k j}\left(\sum_{i=1}^{n} a_{j i} x_{i}\right) \\
& =\sum_{j=1}^{m} \sum_{i=1}^{n} b_{k j} a_{j i} x_{i} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} b_{k j} a_{j i} x_{i} \\
& =\sum_{i=1}^{n}\left(\sum_{j=1}^{m} b_{k j} a_{j i}\right) x_{i}
\end{aligned}
$$

This shows that

$$
z_{k}=\sum_{i=1}^{n} c_{k i} x_{i}
$$

where $c_{k i}$ is given by the composition formula (4).

Matrices and vectors

Linear algebra, working with linear relations, is easier when it is made a little more abstract. This is true about the theory, and for working with them in R.

The numbers $a_{i j}$ may be arranged into a matrix called A. This is an arrangement of the numbers:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

The coefficients that determine y_{1} are in the top row (the first row) of A. The coefficients that multiply x_{1} are a_{11} (for y_{1}), a_{21} (for y_{2}), etc. These are in the
first column of A. The matrix A has m rows, one for each variable y_{i}. It has n columns, one for each variable x_{j}. This is an $m \times n$ matrix. The matrix is square if $n=m$. This is common. Otherwise, A is rectangular. A matrix with just one column is called a column vector. A matrix with just one row is a row vector. The numbers $a_{i j}$ are the entries of A. The (i, j) entry of A is $a_{i j}$.

The factors x_{j} may be arranged to form an $n \times 1$ column vector called x.

$$
x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

The numbers x_{j} are the entries, or components, or coordinates of x. If we think of x as a matrix with one column, we should write $x_{j, 1}$ instead of x_{j}, but we usually don't. R (and Matlab, but not Python), also uses column or row vectors in this way. If x is a $n \times 1$ matrix in R , then we can "access" x_{j} using either $x[j]$ or $x[j, 1]$.

A vector (a column vector in this case) is said to be a point in n-dimensional space. For example, a point in three dimensional space is determined by its three coordinates. Instead of writing them (x, y, z), we write

$$
x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

It can be confusing to explain that " x " is x_{1}, " y " is x_{2}, and " z " is x_{3}. The n-dimensional space is written \mathbb{R}^{n} (pronounced " r n "). The \mathbb{R} is for real numbers. The n indicates that there are n components.

The operation of matrix multiplication corresponds to composition of linear relations. Suppose the composition is

$$
x \xrightarrow{\left\{a_{j i}\right\}} y \xrightarrow{\left\{b_{k j}\right\}} z
$$

If the factor loadings $c_{k i}$ are given by (4), then (we just saw this)

$$
x \xrightarrow{\left\{c_{k i}\right\}} z .
$$

If A is the matrix with entries $a_{j i}$ and B is the matrix with entries $b_{k j}$ and C is the matrix with entries $c_{k i}$ given by (4), then we write

$$
\begin{equation*}
C=B A \tag{5}
\end{equation*}
$$

In the composition formula (refcm), the $b_{k j}$ entries are all on row k of B. This is because k is the same for each entry, while j runs from 1 to m. The A entries $a_{j i}$ are all from column i. The formula says you multiply and add the entries from row k of B with the entries from column i of A. This gives you $c_{k i}$, which is the entry in row k and column i of C. In the illustration below, the bold element
$\mathbf{c}_{\mathbf{k i}}$ is computed from the bold elements $\mathbf{b}_{\mathbf{k} \mathbf{1}}, \cdots, \mathbf{b}_{\mathbf{k m}}$ and the bold elements $\mathbf{a}_{1 \mathbf{i}}, \cdots, \mathbf{a}_{\mathbf{m} 1}$.

$$
\begin{gathered}
\text { column } i \\
\text { row } k \rightarrow\left(\begin{array}{ccccc}
c_{11} & \cdots & c_{1 i} & \cdots & c_{1 n} \\
\vdots & & \vdots & & \vdots \\
c_{k 1} & \cdots & \mathbf{c}_{\mathbf{k i}} & \cdots & c_{k n} \\
& & \vdots & & \\
c_{l 1} & \cdots & c_{l i} & \cdots & c_{l n}
\end{array}\right)=\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 m} \\
\vdots & & \vdots \\
\mathbf{b}_{\mathbf{k} 1} & \cdots & \mathbf{b}_{\mathbf{k m}} \\
& & \\
b_{l 1} & \cdots & b_{l m}
\end{array}\right)\left(\begin{array}{ccccc}
a_{11} & \cdots & \mathbf{a}_{1 \mathbf{i}} & \cdots & a_{1 n} \\
\vdots & & \vdots & & \vdots \\
a_{m 1} & \cdots & \mathbf{a}_{\mathbf{m i}} & \cdots & a_{m n}
\end{array}\right)
\end{gathered}
$$

This works if the m for B (the number of columns) is equal to the m for A (the number of rows). The matrices B and A are compatible for multiplication if this is true. If you try to multiply matrices in R that are not compatible, you get an error message.

A linear relation (22 may be expressed as matrix multiplication. The matrix $m \times n$ matrix A has the entries $a_{i j}$. The other "matrix" is the column vector x with entries x_{j}. This is an $n \times 1$ matrix. The matrix product $y=A x$ is an $m \times n$ matrix multiplied by an $n \times 1$ matrix, which gives an $m \times 1$ matrix. This is the m-component column vector y.

In the example above, $n=2$ and $m=2$. The matrix of factor loadings is

$$
A=\left(\begin{array}{lll}
2 & 3 & 4 \\
5 & 6 & 7
\end{array}\right)
$$

The matrix-vector product that gives y is

$$
\begin{aligned}
y & =A x \\
\binom{y_{1}}{y_{2}} & =\left(\begin{array}{lll}
2 & 3 & 4 \\
5 & 6 & 7
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
\binom{y_{1}}{y_{2}} & =\binom{2 x_{2}+3 x_{3}+4 x_{3}}{5 x_{1}+6 x_{2}+7 x_{3}} .
\end{aligned}
$$

The first entry of y, which is the first "row" of the column vector is found using the first row of A and the first column of x, which is all of x because it has one column. The second entry y_{2} uses the second row of A.

Matrix "multiplication" (the composition formulas (4) is not commutative. If A and B are matrices, then $A B \neq B A$ most of the time. In fact, unless A and B are square matrices, and if $A B$ is compatible (the number of columns of A is the number of rows of B) then $B A$ is not compatible. In this case, the product $A B$ is defined, but the product $B A$ is not even defined. If A and B are square matrices of the same size, even then it is unlikely that $A B=B A$. For example

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right), \quad B=\left(\begin{array}{ll}
5 & 0 \\
0 & 6
\end{array}\right)
$$

has

$$
A B=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
5 & 0 \\
0 & 6
\end{array}\right)=\left(\begin{array}{ll}
1 \cdot 5+2 \cdot 0 & 1 \cdot 0+2 \cdot 6 \\
3 \cdot 5+4 \cdot 0 & 3 \cdot 0+4 \cdot 6
\end{array}\right)=\left(\begin{array}{cc}
5 & 12 \\
15 & 24
\end{array}\right) .
$$

but

$$
B A=\left(\begin{array}{ll}
5 & 0 \\
0 & 6
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{cc}
5 & 10 \\
18 & 24
\end{array}\right) \neq\left(\begin{array}{cc}
5 & 12 \\
15 & 24
\end{array}\right)=A B
$$

But matrix multiplication is associative. That is, a product with more than two factors can be computed in any way that preserves the order of the matrices. For example, a triple product $A B C$ may be computed as $(A B) C$ or as $A(B C)$. In the first case, you first calculate the matrix product $A B$ and then multiply this by C. In the second case, you first compute the product $B C$ and then multiply by A. For example, consider the triple product

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
5 & 0 \\
0 & 6
\end{array}\right)\left(\begin{array}{ll}
0 & 2 \\
3 & 0
\end{array}\right) .
$$

It may be computed as

$$
\left[\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
5 & 0 \\
0 & 6
\end{array}\right)\right]\left(\begin{array}{ll}
0 & 2 \\
3 & 0
\end{array}\right)=\left(\begin{array}{cc}
5 & 12 \\
15 & 24
\end{array}\right)\left(\begin{array}{ll}
0 & 2 \\
3 & 0
\end{array}\right)=\left(\begin{array}{cc}
36 & 10 \\
72 & 30
\end{array}\right) .
$$

It could be computed as

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left[\left(\begin{array}{ll}
5 & 0 \\
0 & 6
\end{array}\right)\left(\begin{array}{ll}
0 & 2 \\
3 & 0
\end{array}\right)\right]=\left(\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{cc}
0 & 10 \\
18 & 0
\end{array}\right)=\left(\begin{array}{ll}
36 & 10 \\
72 & 30
\end{array}\right) .
$$

The result is the same. Linear "algebra" (doing manipulations with matrices and vectors) often involves clever use of the fact that matrix multiplication is associative.

Matrix multiplication associativity applies to the special case when one of the matrices is a "vector" (a column vector $=n \times 1$ matrix, or row vector $=1 \times n$ matrix). For example, if A and B are matrices compatible for multiplication and x is a column vector, then

$$
(B A) x=B(A x) .
$$

A few pages ago we used notation $y=A x$ and $z=B y$, so $z=B(A x)$. We found the composition formulas (4) so that the matrix $C=B A$ would satisfy $z=C x$. This shows that the matrix multiplication formula was derived to make matrix multiplication associative. Warning: the matrix product $B A$ means "first do A, then do $B^{\prime \prime}$. In diagrams, this is

$$
x \xrightarrow{A} A x \xrightarrow{B} B(A x)=(B A) x .
$$

The transpose of a matrix is the matrix you get by reversing the order of the indices. If A an $m \times n$ matrix with entries $a_{j i}$, then A^{t} (the transpose of A), is
the $n \times m$ matrix with entries $a_{i j}$. For example,

$$
A=\left(\begin{array}{lll}
2 & 3 & 4 \\
5 & 6 & 7
\end{array}\right) \Longleftrightarrow A^{t}=\left(\begin{array}{ll}
2 & 5 \\
3 & 6 \\
4 & 7
\end{array}\right)
$$

The transpose of A^{t} is A (see the example):

$$
\left(A^{t}\right)^{t}=A
$$

Two common uses of matrix transpose and matrix multiplication involve column vectors x and y of the same dimension. The inner product of x and y is the 1×1 matrix

$$
x^{t} y=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\sum_{i=1}^{n} x_{i} y_{i}
$$

For $n=2$ or $n=3$ (two or three dimensions), this is sometimes called the dot product and written $x \cdot y$. The inner product (dot product) is one of the rare classes of matrix multiplication that is commutative: $x \cdot y=x^{t} y=y \cdot x=y^{t} x$. You can check this from the formula $\sum x_{i} y_{i}=\sum y_{i} x_{i}$. The inner product is (or, of you're a philosopher, may be interpreted as) just a number, which commutes with anything. The outer product of two column vectors of size n is the $n \times n$ matrix $x y^{t}$. For example, suppose we have $n=3$ component vectors

$$
x=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \quad, \quad y=\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)
$$

Then the outer product is the 3×3 matrix

$$
x y^{t}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\left(\begin{array}{lll}
4 & 5 & 6
\end{array}\right)=\left(\begin{array}{ccc}
4 & 5 & 6 \\
8 & 10 & 12 \\
12 & 15 & 18
\end{array}\right)
$$

The inner product is the number

$$
x^{t} y=1 \cdot 4+2 \cdot 5+3 \cdot 6=4+10+18=32 .
$$

If A and B are compatible for multiplication, then B and A might not be compatible. More properly, the product $A B$ is defined but the product $B A$ is not defined. However, if the product $A B$ is defined, then the product $B^{t} A^{t}$ is defined. The relation between these is

$$
\left(A B^{t}\right)=B^{t} A^{t}
$$

You can prove this by writing formulas with sums and indices, or you can check it in simple examples.

Matrix inverse and solving systems of equations

It may happen that you know the outcome of a linear relation and you want to find the input. That is, you know the numbers y_{i} and you want to find the numbers x_{j} so that the formulas (2) are satisfied. You probably learned how to do this in high school (at least for $n=2$). This is possible, and the answer is unique (only one set of x_{i} is consistent with the known y_{j}) if $n=m$ (square matrices) and if the matrix A is invertible. Usually, a square matrix is invertible unless there is a specific reason for it not to be. You would learn more about this in a linear algebra class. The result is expressions for the variables x_{i} in terms of the know quantities y_{j}.

These relations are also linear (it turns out), so they may be written as

$$
x_{i}=\sum_{j=1}^{n} b_{i j} y_{j} .
$$

In matrix form, this is $y=B x$. The relationship between A and B can be found using a diagram

$$
x \xrightarrow{A} A x \xrightarrow{B} B(A x)=(B A) x=x .
$$

This says that $B A$ is a matrix that "takes" x to itself. This matrix is called the identity matrix and written I. Its entries are written $\delta_{i j}$, where

$$
\delta_{i j}=1, \quad \text { if } i=j, \quad \delta_{i j}=0, \quad \text { if } i \neq j
$$

The sums to apply this matrix are (only one term in the sum is different from zero)

$$
(I x)_{j}=\sum_{i=1}^{n} \delta_{j i} x_{i}=x_{j} .
$$

The matrix relation $B A=I$ is written $B=A^{-1}$. We say that B is the inverse matrix for A.

It turns out that if $B A=I$ then $A B=I$ also. Matrix multiplication is not normally commutative, but it is for a matrix and its inverse. You can see this by showing that $B A y=y$ for all y. If x is the unique vector with $A x=y$, and if $x=B y$, then $A(B y)=y$. The relation $B A=I$ shows that if B is the inverse of A, then A is the inverse of B.

Matrices and vectors in R

R makes it possible to work with matrices and vectors using matrix/vector notation. As with arrays, you can first create a matrix of a certain shape, then fill in the numbers. For example, here we make a 2×3 matrix with all ones:

```
; > n = 2
>m = 3
>A = matrix(1,n,m)
> A
[
[2,] 
```

Figure 1: The command matrix (a, n, m) makes an $n \times m$ matrix with all entries equal to a.

Here we make a more interesting square matrix. We start with all ones, then change the diagonal entries to $2,3,4$, then change a_{12} to 5 . The R function solve() finds the inverse matrix. The multiplication symbol for matrices is $\% * \%$, not just $*$. We check that $B A=I$ by computing the matrix matrix product $B A$ using B $\% * \%$ A. The result may not look like the identity matrix until you look closer.

```
>n=3
> A = matrix(1,n,n)
> for ( i in 1:n){
+ A[i,i] = 1+i
+ }
>A[1,2] = 5
> A
[,1] [,2] [,3]
[2,]
[3,] 1 1 4
> B = solve(A)
>B
[,1] [,2] [,3]
[1,] 2.2 -3.8 0.4
[2,] -0.6 1.4 -0.2
[3,] -0.4 0.6 0.2
> A %*% B
[,1] [,2] [,3]
[1,] 1.000000e+00 4.440892e-16 5.551115e-17
[2,] -1.110223e-16 1.000000e+00 5.551115e-17
[3,] 0.000000e+00 0.000000e+00 1.000000e+00
```

Figure 2: Compute the inverse of an interesting matrix and check that it works.

The diagonal entries are 1 , as they are supposed to be. But the $(1,2)$ entry is $4.440892 \mathrm{e}-16$. The last part, $\mathrm{e}-16$, means $\cdot 10^{-16}$. This number is $4.440892 \cdot 10^{-16}$, which is a very small number. Computer calculations are not exact, because the computer is not infinite. Computer calculations usually have roundoff error, which comes from rounding. For example $1 / 3=.333333 \ldots$ might be rounded to $x=.3333$. With this approximation $3 x=.9999 \neq 1$. There is a little roundoff error. Typical roundoff error for R is on the order of 10^{-16}, so the computed number is consistent with zero.

Figure 3 illustrates column and row vectors. The matrix transpose, A^{t},
in R is $\mathrm{t}(\mathrm{A})$. First create a 3×1 matrix x, which is a column vector with 3 components. Then set $x_{i}=i$. This is printed as a column vector - one column and three rows. The transpose, which is the row vector x^{t}, is $\mathrm{t}(\mathrm{x})$. It is printed as a 1×3 matrix. The matrix $x x^{t}$ is a $3 \times t$ matrix

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right) .
$$

R gets the same answer. The matrix $x^{t} x$ is a 1×1 matrix, which is just a number. The value is

$$
\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=1 \cdot 1+2 \cdot 2+3 \cdot 3=14
$$

```
>}\vec{n
>x = matrix(0,n,1)
>x
[1,] [,1]
[1,]
[3,]
    + x[i] = i
+
>x
M
[2,] 
> t(x)
[1,] [,1] [,2] [,3]
> x %*% t(x)
M
[2,] 
> t(x) %*% x
[1,] [,1]
> '
```

Figure 3: Column and row vectors and transpose.

Figure 4 shows an R script that creates bigger matrices related to Assignment 6. The command print () prints a matrix in matrix format. You can achieve the same effect using formatted output and sprintf, but it's more work. The script plays with 7×7 matrices. You could do 100×100 matrices, but the printout would be hard to read. Lines 6 to 9 make $a_{i, i+1}=a_{i+1, i}=1$. The main diagonal (or just diagonal) entries are $a_{i i}$. The subdiagonal entries are just below these, which is $a_{i+1, i}$ (just below $a_{i i}$). The superdiagonal entries are $a_{i, i+1}$ (just to the right, actually). A matrix with non-zeros only here is called tridiagonal. Lines 13 to 16 create a column vector x with components given by the geometric series $x_{i}=\left(\frac{1}{2}\right)^{i}$. Finally, we take $A+x x^{t}$, find the inverse, and check that the inverse is correct. The output is in Figure 5

```
O}\mathrm{ i MatPlay.R
㽡 < > 居 MatPlay.R > No Selection
    n = 7
    for (i in 1:n){ # 2 on the diagonal
        A[i,i] = 2
        for
    for ( i in 1:(n-1)){ # 1 on the sub-diagonals
        A[i,i+1] = 1
        A[i+1,i] = 1
    }
    print('The tri-diagonal matrix A')
    print(A)
    x = matrix(0, n, 1)
    for ( i in 1:n){ # geometric series, x_i = (1/2)^i
        x[i] = .5**i
    }
    A = A + x %*% t(x) # A with a rank one modification
    print('Adding }x\mp@subsup{x}{}{\wedge}t\mathrm{ gives')
    print(A)
    B = solve(A)
    print('B = inverse(A) is')
    print(B)
    print('Check that AB = I, to within roundoff error')
    print(A %*% B)
```

Figure 4: Column and row vectors and transpose.

Figure 5: Column and row vectors and transpose.

