
Mathematics of Finance, Courant Institute, Spring 2019
https://www.math.nyu.edu/faculty/goodman/teaching/MathFin2019/MathFinance.html

Principal Components

Introduction

Principal component analysis is an approach to the problem of finding simple ap-
proximate descriptions of variations in large datasets. More concretely, suppose
there are n time series of length T :

Xt,k , t = 1, . . . , T , k = 1, . . . , n .

These could be, among other things, the daily returns on n assets, or the LIBOR
rates for n different loan durations. You could try to “explain” these time series
in terms of a single series Ut. This might involve choosing an optimal “weight”
wk for series k and minimizing the residuals, Rt,k:

Xt,k = wkUt +Rt,k . (1)

If you have the “explanation” series Ut, then you can look for the optimal
weight wk for each series. If you have n series, you could look for single series
Vt that does the best overall. This would be the first principal component for
the collection of series Xt,k.

The time series Ut is the single time series that has the most in common with
the n separate series Xt,k for k = 1, . . . , n. If Xt,k is the daily return for asset
k on day t, then Ut can be interpreted as the overall market. The weight wk is
a multiplier that describes how much “influence” the overall market variable Ut
has on asset k. If Xt,k is the LIBOR rate on day t for a loan with duration Dk

(in days), then Ut represents the overall interest rate picture on day t. It answers
the question: “what do interest rates look like today?” Suppose D1 = 1 for the
overnight interest rate and Dn = 9958 for 30 year loans. Then the series Ut
represents the tendency for overnight and 30 year rates to rise and fall together.
The weight wk says how sensitive duration Dk loans are to the overall interest
rate variable Ut. If short term interest rates fluctuate less than long rates, then
w1 will be smaller than wn. It could happen (but doesn’t) that the long rate
goes down when the short rate goes up. In that case w1 and wn would have
different signs.

You can look for more than one principal component. There could be time
series Ut,j for j = 1, . . . ,m for m principal components. Then time series Xt,k

would have weight wj,k for the principal components j = 1, . . . ,m. The residuals
would be defined by

Xt,k =

m∑
j=1

wkjUt,j +Rt,k .

In the interest rate example, Ut,1 might represent the overall “level” of interest
rates on day t while Ut,2 could represent the “slope” of the yield curve. If Ut,2
is large then Xt,n (long rate) is much larger than Xt,1 (short rate).

1

Principal component analysis means finding and interpreting the principal
components. It uses the residual sum of squares optimality criterion. The
principal components and weights are chosen to minimize

Qm =

T∑
t=1

n∑
k=1

R2
t,k . (2)

This is done sequentially. The first principal component Ut,1 is chosen to min-
imize Q1, then the second principal component Ut,2 is chosen to minimize Q2,
and so on.

The index t need not refer to time. For example, if k refers to a company,
then the vector Xk could consist of T numbers associated to that company. The
numbers could be things like earnings, debt, profit, market capitalization, etc.
Then principal component analysis would mean making company “profiles”,
or looking for the ways the variation between companies can be explained by
a small number of factors. Images are another application. Here, image k is
described by, say, T = 10, 000 pixel values (for a 100× 100 pixel image). If the
images are faces, the principal components are called eigen-heads because of the
relationship between principal component analysis and eigenvalues.

Principal component analysis refers to finding principal components and us-
ing them for approximation. In numerical analysis and some parts of statistics,
this is called the singular value decomposition, abbreviated SVD. This is also
“related to” (the same as, once you figure out the definitions and notation) as
the Karhunen Loeve expansion.

Matrix formulation, linear algebra

The time series numbers Xt,k for 1 ≤ t ≤ T form the components of a column
vector with T components

Xk =

X1,k

...
XT,k

 .

These vectors form the columns of a T×n data matrix X, which may be written

X =


| | |

X1 · · · Xk · · · Xn

| | |


.

2

Suppose Ut,j are the numbers in principal component j. These are the compo-
nents of Uj , which is a column vector with T entries

Uj =

U1,j

...
UT,j

 .

Similarly, the residual vector for time series k is

Rk =

R1,k

...
RT,k

 .

The residual vectors form the columns of the residual matrix, as with the data
vectors and data matrix:

R =


| | |

R1 · · · Rk · · · Rn

| | |


.

The expression residuals (1) may be written in vector form as (with U = U1

being just the first principal component)

Rk = Xk − wkU1 . (3)

This may be written in matrix form using a n component row vector

w =
(
w1 · · · wn

)
.

The matrix form of (1) and (3) is

R = X − U1w . (4)

This may be rewritten as X = U1w+R. In matrix form, this represents the tall-
think data matrix X as the sum of the explanation part, which is the column
vector U1 multiplied by the row vector w and the residual R, which has the

3

same shape as X:

X =

U1

w

+ R

The (t, k) entry of U1w is Ut,1wk, which is the prediction of Xt,k in (1).
If we use two principal components to “explain” the data matrix X, we can

put the two principal component vectors into a T × 2 matrix U . We can put
the two sets of weight vectors (row vectors) into a 2 × n matrix w. The T × 2
matrix U can multiply the 2× n matrix w, and gives a T × n matrix Uw. The
residual is X − Uw. The (t, k) component of the residual is

Rt,k = Xt,k − (Ut,1w1,k + Ut,2w2,k) .

The matrix form, with shapes, is:

X =

U =
(
U1 U2

)

w =

(
w1

w2

)

+ R

4

If you use m principal components, the task is to find a T ×m matrix U and an
m × n matrix w so that R = X − Uw is minimized, in the least squares sense
(2).

A more abstract point of view uses the linear concept of rank of a matrix. If
Y is a T ×n matrix, then rank(Y) is the dimension of the vector space spanned
by the columns of Y . If Y is tall and thin (as a data matrix may be), then
the rank of Y is n if the column vectors are linearly independent. The data
matrix X probably usually has this property. But the T × n matrix U1w has
rank 1. To see this, note that the first column of U1w is U1w1 and the second
column is U1w2, etc. Each column is a multiple of the first column (assuming
w1 6= 0). It is “easy to see” that any rank 1 matrix may be written in this way,
as the product of a column vector and a row vector. Therefore, the abstract
formulation of the first principal component component problem is to find the
rank 1 matrix that best approximates X in the sum of squares sense. With
m principal components, the problem is to find the rank m matrix that best
approximates X.

Suppose U is a column vector and w is a row vector and we know Uw. Then
we know U and w only “up to a constant factor”. That is, 2U1 and 1

2w have
the same product as Uw. We cannot tell by looking at Uw whether the column
vector is U or 2U , because the row vector might be w or 1

2w. The problem
is worse for higher rank approximations. If U is a T ×m matrix and w is an
m×n matrix, then the approximation to X is Uw. If A is any invertible m×m
matrix, then

Uw = (UA)
(
A−1w

)
.

If Ũ = UA, then the best approximation with U is the same as the best approx-
imation with Ũ . This is because the “column space” spanned by the columns
of U is the same as the column space spanned by the columns of Ũ = UA. The
singular value decomposition of X determines singular vectors Uk in some order
so they become (nearly) uniquely defined.

First singular value and vector

You can approach the singular value decomposition from a point of view that
at first seems different from optimal approximation. The two approaches lead
to the same vectors and the same approximations. To find the singular value
decomposition, we start by asking about the “maximum stretch” that can be
achieved by the matrix X. The stretch is measured in the sum of squares sense,
in which the “length” of a vector (usually called the vector norm), is

‖v‖ =

√√√√ n∑
k=1

v2k .

The double bar notation on the left ‖·‖ is supposed to make norm look like
absolute value but fancier (hence, two bars instead of one). The absolute value
measures the size of a number and the norm measures the size of a vector. There

5

are other ways to measure the size of a vector (the largest element, in absolute
value, the sum of absolute values, etc.), but this is the one that leads to the
singular value decomposition.

If v is an n component column vector, then y = Xv is a T component column
vector. The stretch is ‖y‖ / ‖v‖. The maximum stretch is

σ1 = max ‖y‖ , with ‖v‖ = 1 . (5)

This is a constrained optimization problem like the ones we did in mean variance
analysis. It is simpler without the square roots, so we solve the equivalent
problem

σ2
1 = max ‖y‖2 , with ‖v‖2 = 1 .

It helps to write the norms as inner products, so

‖y‖2 = y1 · y1 + · · ·+ yn · yn =
(
y1 · · · yn

)y1...
yn

 = yty .

With this, the optimization problem is

σ2
1 = max yty , with vtv = 1 . (6)

This becomes more explicit when we substitute y = Xv (recall that the trans-
pose of a product of matrices is the product of the transposes, with the order
reversed, and that matrix multiplication is associative):

yty = (Xv)
t
(Xv) =

(
vtXt

)
(Xv) = vt

(
XtX

)
v .

Therefore,
yty = vtCv , where C = XtX .

The matrix C = XtX is n×n, being the product of n×T and T×n matrices:

Xt

X = C

n

T

n

T

n

n

6

It is symmetric, because (using the rules of transposes, with (Xt)
t

= X)

Ct =
(
XtX

)t
= Xt

(
Xt
)t

= XtX = C .

The entries of C are (the (i, t) entry of Xt is the (t, i) index of X)

Cij =

T∑
t=1

(
Xt
)
it
Xtj

=

T∑
t=1

XtiXtj .

This is the same as the covariance we saw in mean/variance analysis, except
that we have not subtracted the means from the data columns. It is clear from
this formula that Cij = Cji, which is to say that C is symmetric.

The maximization problem for maximum stretch is

max vtCv , with vtv = 1 . (7)

This constrained optimization problem can be solved using a Lagrange multi-
plier, as in mean/variance analysis. The objective function is f(v) = vtCv and
the constraint function (there is just one constraint here) is g(v) = vtv. The
Lagrange multiplier condition is

∇f(v) = λ∇g(v) .

We saw, in mean/variance analysis, that

∇vtCv = 2Cv .

If we take C = I (the identity matrix), we get

∇vtv = 2v .

This may be seen directly. The j component of ∇vtv is

∂

∂vj

n∑
i=1

v2i =

n∑
i=1

∂v2i
∂vj

= 2vj .

Thus, the Lagrange multiplier equation for this problem is

Cv = λv . (8)

An equation of the form (8) is an eigenvalue equation. The the vector v is
an eigenvector and the number λ is an eigenvalue.1 The eigenvalue equation

1 The these terms are half translations from the original German, where “eigen” means
“proper” and “Werte” means value. The half-translation of normal German “eigenwerte”
becomes the weird “eigenvalue”. The French did a more complete translation to “valeur
propre” (two French words).

7

says that the vector Cv is in the same direction as v. For most matrices and
most vectors, Cv is in a different direction. Eigenvector directions v are special.
There is a lot of theory and many applications of eigenvalues and eigenvectors.
I mention only the things that are needed for singular values and principal
component analysis.

The eigenvalue equation (8) may be thought of as an algebraic equation for
λ. It turns out that there is a polynomial p(λ) so that the zeros of p (the values
of λ with p(λ) = 0) are eigenvalues. Therefore, every matrix has at least one
eigenvalue, if you allow complex eigenvalues. But the eigenvalue λ in (8) is not
complex. We know about it because of the Lagrange multiplier theory. The
symmertic matrix C has at least one real eigenvalue and corresponding real
eigenvector. These come from the optimization problem (7). (You might ask
why this does not apply to show that any matrix has at least one real eigenvalue.
The answer is that ∇(vtCv) = 2Cv only if C is symmetric. Otherwise, ∇(Cv) =
(C +Ct)v. This is the same if Ct = C, but not otherwise. The rotation matrix

C =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
rotates a two component vector by angle θ. A rotated vector v points in a
different direction, so the eigenvalue equation (8) cannot be satisfied. Note that

C + Ct =

(
2 cos(θ) 0

0 2 cos(θ)

)
.

This matrix is symmetric, but it isn’t a rotation matrix. The eigenvalues are
eiθ and e−iθ. They are not real for most θ values.)

If v satisfies the Lagrange multiplier/eigenvalue equation (8), the correspond-
ing value is

vtCv = vt (Cv) = vtλv = λvtv = λ .

The last equation comes from the constraint vtv = 1. The maximum stretch,
according to (6) is

σ1 =
√
λ .

The eigenvalue λ in (8) is not unique. Any zero of p(λ) is an eigenvalue. The
singular value σ1 is the maximum stretch. It corresponds (as we will see) to
the largest eigenvalue of C. We call the corresponding eigenvector v1. This
anticipates that there will be more eigenvectors v2,

More principal components and singular values

The vector v1 is the first right principal component (“right” because v is on the
right of X in Xv). The corresponding left principal component is

U1 = σ1Xv1 .

8

The factor σ1 on the left is so that ‖U1‖ = 1. The vector v1 has (we saw above)
‖Xv1‖ = σ1, so when we take out the factor of σ1, the vector U1 has length 1.

Orthogonality of vectors is important for understanding the rest of the prin-
cipal components and singular values. Column vectors v and w are orthogonal
if vtw = 0. Orthogonality comes up when you minimize or maximize lengths of
vectors or distances – if those lengths and distances are measured in the RMS

(root mean square) sense ‖v‖ =
√∑

v2j . The “mean” square (average square)

would be 1
n

∑
v2j and the “root” mean square would be the square root of that.

We call it RMS even factor 1
n is left out. A simple form of the minimization

property comes from this calculation. It is like the binomial calculation (a+b)2,
except that you have to keep the of order in matrices, except vtw = wtv:

d

dt
‖v + tw‖2 =

d

dt

[
(v + tw)

t
(v + tw)

]
=

d

dt

[
vt (v + tw) + twt (v + tw)

]
=

d

dt

[
vtv + tvtw + twtv + t2wtw

]
=

d

dt

[
vtv + 2tvtw + t2wtw

]
= 2vtw + 2twtw .

Set t = 0 and you get

d

dt
‖v + tw‖2

∣∣∣∣
t=0

= 2vtw = 0 , if vtw = 0 .

You can interpret this to say that if you start at v and start moving in the w
direction, and if w is orthogonal to v, then in the first derivative approximation,
at the start, you don’t change the length. You can see this without calculus
using the calculation we just did and ‖v‖2 = vtv, etc.:∥∥vtw∥∥ = ‖v‖2 + 2tvtw + t2 ‖w‖2

This is a quadratic function of t. If vtw = 0, the minimum is at t = 0. Important
for what we’re about to do: if vtw 6= 0, then t = 0 is not the minimum.
This is the principle: optimizing (minimizing or maximizing) distance implies
orthogonality.

Now we define the second principal component v2, which is the second sin-
gular vector. We also find the second singular value σ2. Recall that v1 and σ1,
and the left principal component U1 are defined by

σ1 = max
v
‖Xv‖ , with ‖v‖ = 1

v1 = arg max
v
‖Xv‖ , with ‖v‖ = 1

σ1U1 = Xv1 .

9

The next singular value and principal components are defined by solving the
same maximization problem with the extra constraint that v is orthogonal to
v1:

σ2 = max
v
‖Xv‖ , with vt1v = 0 , ‖v‖ = 1

v2 = arg max
v
‖Xv‖ , with vt1v = 0 , ‖v‖ = 1

σ2U2 = Xv2 .

The important orthogonality thing that happens here is that U2 comes out to be
orthogonal to U1. We made the second right principal component orthogonal to
the first one (v2 orthogonal to v1) by definition. It is a theorem (hopefully not
obvious at this point) that the left principal components are also orthogonal:
U t1U2 = 0.

We prove the U1, U2 orthogonality theorem by showing that if U t1U2 6= 0
then v1 was not optimal. In fact, if vtv1 = 0, and if v1 is optimal, then Xv
is orthogonal to U1 = Xv1. The proof is by contradiction. We define vectors
Y = Xv and Y1 = Xv1 to be the vectors U and U1 without normalization. The
condition Y tY1 6= 0 is the same as U tU1 6= 0. If there is a v with vtv1 = 0 and
Y tY1 6= 0, then v1 is not optimal. The proof is a calculation using the “trial
vector” v(t) = v1 + tv. We know that v(0) = v1 has ‖v(0)‖ = 0. We also know
that, in the first derivative approximation, ‖v(t)‖ ≈ 1 also (for small t). Now
define Y (t) = Xv(t) = Y1 + tY . The same calculation shows that, in the first
derivative approximation, ‖Y (0)‖ = ‖Y1‖ is not the maximum value of ‖Y (t)‖.
In fact,

d

dt
‖Y (t)‖2

∣∣∣∣
t=0

= 2Y tY1 6= 0

At least in the first derivative approximation, v(0) does not optimize the length
‖U(t)‖ with the constraint ‖v(t)‖ = 1.

This argument using first derivative approximations may be a little too infor-
mal. There is a more formal proof that uses the same ideas. As often happens,
the formal proof hides the idea of the proof inside some more complicated cal-
culations. For the rigorous argument, define a family of trial vectors

v(t) =
1√

1 + t2 ‖v‖2
(v1 + tv) .

In the first derivative approximation, this is the same as v(t) = v1 + tv because

d

dt

1√
1 + t2 ‖v‖2

∣∣∣∣∣∣
t=0

= 0 .

This is the same as saying that in the first derivative approximation, this “nor-
malization factor” is equal to one and may be left out. The more complicated
v(t) has the property that it is always “normalized” to satisfy the constraint

10

‖v(t)‖ = 1. In fact, using calculations we did just before, and vtv1 = 0, we
calculate

‖v(t)‖2 =
1

1 + t2 ‖v‖2
‖v1 + tv‖2 =

1

1 + t2 ‖v‖2
(

1 + t2 ‖v‖2
)

= 1 .

(The normalization factor 1/

√
1 + t2 ‖v‖2 is chosen to make this happen.)

Now, suppose that Y = Xv is not orthogonal to Y1 = Xv1, which is Y tY1 6=
0, as before. Then define Y (t) = Xv(t) and calculate

‖Y (t)‖2 =

∥∥∥∥∥∥ 1√
1 + t2 ‖v‖2

(Xv1 + tXv)

∥∥∥∥∥∥
2

=
1

1 + t2 ‖v‖2
‖Y1 + tY ‖2

=
1

1 + t2 ‖v‖2
(
‖Y1‖2 + 2tY tY1 + t2 ‖Y ‖2

)
The value of ‖Y (0)‖2 is σ2

1 (by definition of Y1 and σ1). The derivative (a
calculation any math finance student can do) is

d

dt
‖Y (t)‖2

∣∣∣∣
t=0

=
d

dt

[
1

1 + t2 ‖v‖2
(
‖Y1‖2 + 2tY tY1 + t2 ‖Y ‖2

)]∣∣∣∣∣
t=0

= 2Y tY1

6= 0 .

This calculation is a combination of the first derivative approximations we just
did, plus the product rule (which is really a property of first derivative approx-
imations). It’s a harder way of doing the less formal reasoning above. Anyway,
if the derivative at t = 0 is not zero, then t = 0 is not a local maximum. There
are nearby t values with ‖Y (t)‖2 > σ2

1 . This is the proof by contradiction: if
Y Xv is not orthogonal to Y1 = Xv1, then σ1 is not the maximum stretch and
v1 does not optimize the stretch.

In this way, we find vectors v2 and U2 = 1
σ2
Xv2 so that ‖v2‖ = 1, ‖U2‖ =

1, vt2v1 = 0 and U t2U1 = 0. It is possible to continue and find v3, v4, etc.
We constrain v3 to be orthogonal to v1 and v2. The vector Y3 = Xv3 will
automatically be orthogonal to Y1 and Y2. If Y3 is not orthogonal to Y1, then
v1 was not optimal (as we just saw). If Y3 is not orthogonal to Y2, then v2 is
not optimal (same reason). In this way, we construct vj with

σjUj = Xvj . (9)

This process has to stop at vn. If v1, . . ., vn are all orthogonal to each other
then there are no n component vectors orthogonal to all of them. Thus, there
cannot be a vn+1. If T < n, the process would have to stop earlier, because the

11

Yk could not all be orthogonal and non-zero. For now, we continue to suppose
T > n (the data matrix X is tall and thin).

To summarize the results, there are n (right principal component) vectors
vj so that ‖vj‖ = 1 and if i 6= j then vtivj = 0. A family of vectors like this
is ortho-normal. They are “ortho” because they are orthogonal to each other.
They are “normal” because they are normalized to have length 1 in the RMS
sense. There are positive principal stretches σ1 ≥ σ2 ≥ · · · ≥ σn. There are n
(left principal component) vectors Uj , which are also ortho-normal, so that

Xvj = σjUj . (10)

Best least squares approximation

Suppose z and v are n component column vectors, and you want to find the
best approximation of z in the form wv. Here w is a number, which is a scaling
factor. The residual for this approximation is R = z − wv. The least squares
best approximation minimizes the sum of squares of the residuals. This is a one
variable (w) minimization problem that can be solved with ordinary calculus.
Here is a vector version of the same calculation:

‖R‖2 = ‖z − wv‖2

= (z − wv)
t
(z − wv)

= ztz − 2wztv + w2vtv

= ‖z‖2 − 2wztv + w2 ‖v‖2 .

The derivative with respect to w is −2ztv + 2w ‖v‖2. Setting this to zero gives
the optimal w:

w∗ =
ztv

‖v‖2
.

If v is normalized to ‖v‖ = 1, then this simplifies to

w∗ = ztv . (11)

This approximation has a geometrical interpretation The approximation z ≈
wv is the projection (or orthogonal projection) of z onto the line generated by
v. The residual R is the projection of z onto the plane (or hyperplane, for more
than 3 dimensions) orthogonal (perpendicular) to v. To see that the residual is

perpendicular to v, calculate (with ‖v‖2 vtv = 1, and ztv = vtw))

vtR = vt(z − wv) = vtz − wvtv = vtz − w = 0 .

This is a form of the orthogonality principle presented earlier: minimum error in
the least squares sense leads to orthogonality. Here, the residual is orthogonal
to the fitting “function” (the vector v).

12

The best approximation using two or more vectors has a similar structure.
Suppose we want to minimize the residual using two fitting vectors

R = z − w1v1 − w2v2 .

Suppose the fitting vectors v1 and v2 are normalized and orthogonal to each
other: ‖v1‖ = 1, ‖v2‖ = 1, and vt1v2 = 0. The residual calculation we did for
one vector fitting may be repeated in almost the same form:

‖R‖2 = RtR

= (z − w1v1 − w2v2)
t
(z − w1v1 − w2v2)

= ‖z‖2 − 2w1z
tv1 − w2z

tv2 + w2
1 + w2

2 .

This depends independently on w1 and w2. Minimizing over w1 and w2 gives

w∗1 = vt1z , w∗2 = vt2z .

The residual (by a similar calculation) is orthogonal to v1 and v2.
It is common to talk about explained and unexplained, or residal sum of

squares. The total sum of squares of z is (in different notations)

SStot =

n∑
j=1

z2j = ztz = ‖z‖2 .

The explained sum of squares is the sum of squares in the approximation w1v1+
w2v2;. This is (using the fact that v1 and v2 are ortho-normal)

SSexp = ‖w1v1 + w2v2‖2

= (w1v1 + w2v2)
t
(w1v1 + w2v2)

= w2
1v
t
1v1 + 2w1w2v

2
1v2 + w2

2v
2
2

SSexp = w2
1 + w2

2 . (12)

The residual sum of squares is

SSres = ‖R‖2

= ‖z − w1v1 − w2v2‖2

= (z − w1v1 − w2v2)
t
(z − w1v1 − w2v2)

= ztz − 2w1z
tv1 − 2w2z

tv2 + w2
1 + w2

2 (using vt1v2 = 0, vt1v1 = 1, etc.)

= ztz −
(
w2

1 + w2
2

)
SSres = SStot − SSexp . (13)

In other words, the total sum of squares is the explained plus the unexplained
sums of squares. This is the pythagorean theorem of data fitting. The pythagorean

13

theorem of Pythagoras is about triangles in the plane where one side is orthog-
onal to another side. The pythagorean theorem of data fitting is about ortho-
normal fitting vectors and the residual being orthogonal to the best fit. Let v1,
. . ., vn be the full set of ortho-normal right principal component vectors. Let
z be any n component column vector. The “approximation” of z using all n
principal component vectors has no residual (more precisely, R = 0). Thus

z =

n∑
j=1

wjvj , wj = vtjz . (14)

All the sum of squares is explained, so

n∑
i=1

z2i =

n∑
j=1

w2
j .

The singular value decomposition, or SVD, of the data matrix X is a repre-
sentation

X = UΣV t . (15)

Here U is a T × n matrix (the same shape as X) whose columns are the left
principal component vectors Uj . Next, Σ is a diagonal n × n matrix with the
singular values σj on the diagonal. Finally, V is an n×n matrix whose columns
are the right principal component vectors vj . The SVD equation contains all the
orthogonality and approximation information that was used to construct the vj .
We prove the matrix SVD formula (15) by showing that for any n component
column vector z,

Xz = UΣV tz .

The trick is to see how X “acts” on the vector z by knowing how z is represented
in terms of the vj (14), and how X acts on vj (9). The result is

Xz = X

n∑
j=1

wjvj

=

n∑
j=1

wjXvj

=

n∑
j=1

σjUjwj

=

n∑
j=1

σjUjv
t
jz

Xz =

 n∑
j=1

σjUjv
t
j

 z .

14

This shows that the data matrix may be represented of a sum involving principal
components

X =

n∑
j=1

σjUjv
t
j . (16)

This is the main formula of principal component analysis. It implies the opti-
mality properties of the principal components Uj mentioned at the beginning
(see below). We will see that this is equivalent to the matrix form (15).

The matrix U has columns Uj . Define
| | |

σ1U1 σjUj σnUn

| | |

 =


| | |

U1 Uj Un

| | |



σ1 0 · · · 0
0 σ2 0
... 0

. . .
...
0

0 · · · 0 σn


The first matrix on the right is U . The second is a diagonal matrix called Σ.
Define columns vectors Yj = σjUj , and the T × n matrix Y with columns Yj .
This says that Y = UΣ. Therefore, the claim that (16) is equal to (15) is the
same as 

| | |

Y1 Yj Yn

| | |



− − vt1 − −

− − vtj − −

− − vtn − −

 =

n∑
j=1

Yjv
t
j .

We can verify this by looking at the elements of the matrices. We choose to
verify it by applying it to a column vector z. We define “weights” wj = vtjz as
before. On the right side, we get n∑

j=1

Yjv
t
j

 z =

n∑
j=1

Yj
(
vtjz
)

=

n∑
j=1

wjYj .

15

On the right, we have


| | |

Y1 Yj Yn

| | |



− − vt1 − −

− − vtj − −

− − vtn − −

 z =


| | |

Y1 Yj Yn

| | |





vt1z
...
vtjz

...
vtnz



=


| | |

Y1 Yj Yn

| | |





w1

...
wj
...
wn


= w1Y1 + · · ·+ wjYj + · · ·+ wnYn .

This is
∑
wjYj . Thus, the PCA form (16) is equivalent to the SVD from (15).

We are finally ready to go back to the motivating formula (1). The best joint
approximation to the n time series using a single principal component is the first
principal component U1. In matrix form, we use σ1U1v

t
1 as an approximation

to X. The residual is (see the PCA formula (16))

R = X − σ1U1v
t
1 =

n∑
j=2

σjUjv
t
j .

In components, the first principal component approximation (with residual) is

Xt,k = Ut,1σ1v1,k +Rt,k .

Therefore, the approximation weights are wk = σ1v1,k. The best approximation
(in the sum of squares sense) using m time series is

Xt,k ≈
m∑
j=1

wjkUt,j , wjk = σjvj,k

In matrix form, the residual from this approximation is

R = X −
m∑
j=1

σjUjv
t
j =

n∑
j=m+1

σjUjv
t
j .

The total sum of squares for all the series is

SStot =

T∑
t=1

n∑
j=1

X2
tj =

n∑
j=1

σ2
j .

16

Some calculations show that the explained part, using m principal components,
is

SSexp =

m∑
j=1

σ2
j .

The unexplained, or residual sum of squares is

SSres =

T∑
t=1

n∑
j=1

R2
tj =

n∑
j=m+1

σ2
j .

17

