
Mathematics of Finance, Courant Institute, Spring 2019
https://www.math.nyu.edu/faculty/goodman/teaching/MathFin2019/MathFinance.html

Plotting and data visualization

Visualization means making plots of something you’ve computed. This hand-
out discusses the process of making plots from data. Once you have this, you
can explore the R documentation to see the many different kinds of plots and
visualizations you can make. R was created by statisticians. These people have
some unusual ideas about how to visualize data, particularly statistical data.
For that reason, you may have to spend some time figuring out how to get just
the plots you want.

Good visualization is essential for most computing projects, even the lightweight
ones you get for homework. There are professional standards and visualization
practices just as there are programming standards and software practices. They
take a little time to follow, but they usually save time in the long run. This is
true even if the “long run” is just a two hour homework assignment. You can
have points taken off for poor plots and for poor codes.

Basic line plot

A line plot is a plot of a collection of (x, y) values. The term “line” plot may
come from the idea that you are supposed to connect the dots with lines to see a
curve. Figure 1 shows an R script that makes a line plot. It plots the probability
density function

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

The parameters µ and σ are given on lines 7 and 8. The density function p
is implemented using the function p() defined in lines 10 to 13. The density
p(x) is evaluated at n evenly spaced points starting from x1 = a and ending at
xn = b. The parameters n, a, and b are defined on lines 4, 5, and 6.

The code from lines 15 to 21 creates the values to be plotted. The distance
between points is ∆x = (b − a)/(n − 1) (it’s n − 1 instead of n because both
endpoints are included). Lines 16 and 17 create (initialialize) the arrays of
length n that will hold the x and y values. These both are initialized to the
numbers 1, 2, . . . , n, but these values will be over-written by the actual values,
which happens in the loop starting at line 18. It can be confusing to use the
name x for an array of x values. A name like xa or even xArray might be
clearer. Line 19 creates the evenly spaced x values. Line 20 calls the function
p() to evaluate the probability density, which will be the y value. In formulas,
the data values x[i] and y[i] represent the point in the plane

(xi, yi)

xi = a+ (i− 1)∆x , ∆x =
b− a
n− 1

yi = p(xi) .

1

The R function plot() on line 23 opens (or should open, post on the class forum
if this doesn’t work for you) another window with the (x, y) pairs marked with
little circles.

Figure 1: An R script that makes a basic line plot.

I type

> source("plotting.R") [enter]

at the prompt in the command window (the console) and up pops a window
pictured in Figure 2. If the script were to end here, there would be no record
of the plot except the screen capture in the figure, which is not a good way to
save plots. Lines 27 through 29 tell R to make a .pdf file of the plot. Line 27
creates an R device that records all your plotting commands. In this case, the
device is a “pdf writer”, which creates a .pdf file. The name of the file will be
basicLinePlot.pdf. You could make a .jpeg file of a .gif file, but .pdf usually
results in a higher quality plot. Line 28 is the plotting command. Unfortunately,
it has to be repeated as the one on line 23 happened before the “device” was
created. Often it takes more than one command to make a plot. You have to
repeat all of them. I usually do this with copy and paste. Line 29 turns the
“device” off, which stops the recording and creates the actual .pdf file.

2

Figure 2: The basic plot made with the code of Figure 1

Good plotting practice

Figure 3 has the basic plot code from figure 1 and more stuff to make it more
useful. Figure 4 has the file fancyPlot.pdf that this script saves. It has a plot
title on the top that says what the plot is and gives some parameter values. The
character string title is created by line 23 using the sprintf() function. The
values of µ and σ are embedded in this string. Line 24 creates a subtitle, which
appears at the bottom of the plot. Lines 28 to 33 are an expanded call to the
R function plot(). One new thing is that the command takes more than one
line. You saw this in the beginning with continuation lines. The continuation
is automatic when it is obvious to the interpreter that the command is not
finished. In this case, it is obvious because the function plot(. . .)

has to end with a close paren). Until then, the command is not finished. It
would have been possible to put the whole command on one line (if you delete
the comments), but that line would have been long and hard to read. All R
programming style guides say to avoid long lines in this way. The comment on
line 29, starting with the hashtag character #, is ignored by the interpreter. It
is there to make the program easier to understand by the person reading the
code.

The arguments on lines 29 to 33 are of the form keyword = value. On line
29, main is a keyword whose value is title. Many R functions have a large

3

number of possible arguments that have default values. If the command doesn’t
specify a value of the keyword, then R gives it the default value. The default
value of main is the empty string "". The plot() command on line 23 of
Figure 1 doesn’t specify a value of main so the plot title comes out as the empty
string. That empty string is actually at the top of Figure 2, but you can’t see
it because it’s blank. The other arguments, given on lines 30 to 34 in Figure
3 also have default value "". Saying main = title overrides the default with
the string title. If you look in the documentation of the R plot() function,
you will see that there are many other arguments with default values that we
still aren’t overriding. Some of them change colors (black lines to blue, say),
symbols (circles to triangles, say), line thickness, etc. You can spend a lot of
time making plots fancy. Line 33 tells R to put faint grid lines in the plot. These
make it easier to read function values from the plot. Line 34 calls the R function
lines(), which creates line segments between each pair of points (xi, yi) and
(xi+1, yi+1).

Lines 28 to 34 make a plot appear on the computer screen with all these
features. Lines 42 to 48 make the same plot go into a .pdf file. I created lines
42 to 48 by copy/paste from lines 28 to 34. The comments should say that I
did that. These comments may be the most helpful in the whole script, since
anyone who wants to change the plot has to make sure the change happens in
both places. It’s too easy to change lines 28 to 34 and then forget to copy/paste
the changed code to the part that makes the .pdf file.

4

Figure 3: An R script that makes a basic line plot.

5

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

Gaussians with mean 1.50

Using 150 points
X axis

pr
ob

ab
ili

ty
 d

en
si

ty

standard deviation = 0.50
standard deviation = 0.60

Figure 4: An image of the file fancyPlot.pdf.

Automation is an important principle in lightweight scientific computing,
which is what we’re doing. Once you’re created a script like this, you want to
play with it. In this case, you might want to know what other Gaussian prob-
ability density functions look like. Suppose, for example, we want to see what
happens with standard deviation σ = .5. We change line 8 of the script in Fig-
ure 3 to sig = .5, then type > source("plotting.R") [enter]. You get the
plot in Figure 5. The title of this plot records that σ = .5. Imagine the situation
if we had not put the value of σ in the title. We would have the two plots, one
with σ = 1 and the other with σ = .5, and we would immediately forget which
is which. The title contains the information about the calculation that makes
it possible to look at a collection of plots and know which is which. Informative
titles are crucial in any presentation, even in homework. You will lose points if
your plots don’t have informative titles with the important parameters.

It is possible to type plot titles and other information by hand instead of
putting it into a script. That is, you don’t have to automate your work by
putting it into a script. Many of the examples you find by web searching ques-
tions on R are typed directly at the command line in the console (command)
window. You should do this as little as possible. Non-automated work may be
quicker the first time, because you skip the complexity of writing a script and
typing source("...") [enter] to run it. Scientific computing involves explo-
ration. You want to see what happens if you change something. Exploring, at

6

the command line, involves typing the same or very similar commands over and
over. It’s much quicker to change a few lines in a script and run it again. For
example, the curve in Figure 5 doesn’t give a very clear picture of graph of p(x)
because the points xi are too far apart. That’s easy to fix by using more points.
Let’s see whether n = 50 is enough points. Change line 4 to n = 50 and source

the script. The new plot is better but not great. Let’s try n = 80. That looks
good enough to me. This plot is in Figure 6. Imagine how long it would taken
to do this trial and error experiment typing the plot titles by hand. Would you
have bothered to do it?

Figure 5: Just changing line 8 to sig = .5.

7

Figure 6: Just changing line 4 to n = 80.

Informative plots

Good plots convey a lot of information. Put multiple curves in the same plot.
These could be theory and data, or plots with different parameter values. This
makes it easier to compare the curves. Use color or line style or symbols to
distinguish different curves. Use a legend in the plot to label the curves. Choose
scales and plot styles to make plots easy to read.

It can be frustrating and time consuming to get plots to look the way you
want. Information on the web is either sketchy or too detailed. Examples are
poorly documented and explained, and they don’t always work. The language
itself can be clumsy. R is worse than Python or Matlab in these ways: clumsy
graphics routines, poor documentation.

Download the file plotting.R next to this handout. Save it with your other
R scripts and open it in the R script editor so you can see the line numbers.
Figure 7 has the plot with two curves. The density with σ = .5 is the solid
black line. The density with σ = .6 is the dotted green line (dark green may be
hard to tell from black, but it is different). The legend in the top right box says
which curve is which. Putting the two curves together in the same plot makes
it easy to see the differences. The density with larger σ is wider (obviously).
Also, the peak density is lower. The area under both curves is 1, so the wider

8

curve has to have a lower peak. It may seem surprising: the peak seems a lot
lower although the wider curve is only a little wider.

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

Gaussians with mean 1.50

Using 150 points
X axis

pr
ob

ab
ili

ty
 d

en
si

ty

standard deviation = 0.50
standard deviation = 0.60

Figure 7: Two Gaussian densities plotted together.

lines2-4 Whenever you post code or give it to someone else, it should have
some explanation at the top – who wrote it, when, and why.

lines 7-12 The parameter values have changed and the = signs don’t line up
any longer. There are two σ parameters σ1 and σ2 for the two plots. Note
that the new value n = 150 appears in the plot subtitle. If n = 80 had
been hard wired, I probably would have forgotten to change it both places.

lines 14-17 The function that evaluates the Gaussian PDF is the same. That
shows the value of defining functions with arguments.

lines 20-22 The x values are the same, but there are two sets of y values.

lines 26-27 Call the Gaussian density function twice, with the two σ parame-
ters.

lines 33-37 Different lines can have different types and different colors. Use
this to make it easy to see which line is which on the graph.

lines 39-40 The text of the legend should have the parameter(s) defining each
curve.

9

lines 42-44 The R plot function legend() takes arrays as arguments. Each
array has one data member for each curve. The R function c(.,.,.)

creates an array with the arguments as data members. For example, types
will be an array of length 2 with types[1] having the value type1, etc.
Legends and colors are character strings (the "..." on lines 33, 34, and
the sprintf() on lines 39 and 40). Line types (solid, dashed, dotted,
mixed) are integers.

line 55 This gets rid of the circles marking the data points in Figure 6.

lines 56-57 Specify the style (type) and color of the first curve.

lines 63-66 Put the legend in the top right corner of the plot. For some reason,
legends is an argument you just give, but col (for colors) and lty (for
line type) have to be given by name.

lines 77-97 Once the plot commands worked (after hours of fighting with the
computer) I could copy/paste them to lines 77-97 to make the .pdf file.
There is an R function copy2pdf that should make this easier, but I wasted
hours trying to make it work before giving up. Help!

10

