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Asset allocation in finance is the problem of deciding how to allocate your
assets among a menu of risky investments. Mean variance analysis is a frame-
work this. The return on an investment is the profit, expressed as a percentage
(return = profit/investment). You have to do the allocation (make your invest-
ments) before the return is known. It is treated as a random variable with a
mean and variance. The mean, which is the expected return, is something the
investor wants to be large. The variance of the return is a measure of risk, which
the investor wants to be small. Asset allocation (investing) is seen as a tradeoff
between risk (variance) and return (expected return).

You can think of asset allocation theory as a systematic approach to diver-
sification. Suppose there are two stocks S1 and S2 that each have µ = 10%
expected return and variance σ2. Suppose S1 and S2 are independent random
variables (an extreme case, real stocks aren’t independent). If you invest $100
on S1 or S2, then you have mean 10% and variance σ2. If you invest $50 each on
S1 and S2, then your mean is still 10%, but your variance is 1

2σ
2 (calculations

below). Diversification, spreading your money around, has given you the same
expected return with less risk. Mean/variance analysis is for (somewhat) more
realistic situations. Suppose that µ2 < µ1, then there is a cost (lost expected
return) to investing in S2. There is a tradeoff. Reduced risk comes at the cost
of reduced expected return.

The goal of mean variance analysis is to choose the investment strategy that
maximizes expected return for a given risk. Equivalently (we will see this) you
can minimize risk (variance) for a given expected return. A portfolio (asset
allocation) is called efficient if it satisfies these criteria. There is more than one
efficient portfolio. Some have high return and high risk. Others have less return
in exchange for less risk. Different investors will choose different points on the
risk/return curve. But every investor should have an efficient portfolio. No
investor wants to have less expected return than they could have for a specified
risk. The efficient frontier is the set of all efficient portfolios.

The simple mean variance analysis covered here is just the beginning of asset
allocation and investment. The ideas explained here, along with others, are used
in most fancier theories of asset allocation or investment and trading strategies.

Review of variance and covariance

If X is a random variable, the expected value is E[X]. It is common (but not
universal) to use capital letters for random variables and lower case letters for
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values they might take. If X has a probability density p(x), then

E[X] =

∫ ∞
−∞

xp(x) dx .

A random variable with a probability density is called continuous. The proba-
bility density of a continuous random variable doesn’t have to be a continuous
function of x. The expectation may be written µ or µX (to emphasize the
random variable it is the expectation of) or X.

Some random variables take values only in a certain list of values. The
possible stock prices in the binary or binomial tree model are examples. A
random variable like this is called discrete. Suppose the possible values are
called xj and Pr(X = xj) = pj . Then

E[X] =
∑
k

xjpj .

The expectation has some mathematical properties that don’t depend on how it
is defined. The expectation is linear. If X and Y are any two random variables,
then

E[X + Y ] = E[X] + E[Y ] .

If c is a constant (not random), then

E[cX] = cE[X] .

The expected value of a constant is that constant.
The variance of X is

var(X) = E
[

(X − µX)
2
]
.

The variance is often called σ2, or σ2
X . The standard deviation is

σX =
√
σ2
X =

√
var(X) .

The variance is easier to calculate (because it doesn’t have a square root), but
it may be less meaningful. The standard deviation measures how far X is likely
to be from its mean.

Suppose X and Y are two continuous random variables. We write pX(x)
for the probability density of X, and pY (y) for the probability density of Y .
The joint probability density is pXY (x, y). If X and Y are independent, then
pXY (x, y) = pX(x)pY (y). It is uncommon that two random variables in finance
are independent.

The covariance of X and Y is

cov(X,Y ) = E[ (X − µX) (Y − µY )] .

If X and Y are independent, then (check this!) cov(X,Y ) = 0. If cov(X,Y ) 6= 0,
then X and Y are not independent. We say they are correlated. If cov(X,Y ) >
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0, we say that X and Y are positively correlated. Almost every pair of stock
prices is positively correlated. If cov(X,Y ) < 0, we say X and Y are negatively
correlated, or anti-correlated. It is often said that stock and bond prices are
anti-correlated. If bond prices go up, then people sell their stocks to buy bonds
(the story goes).

The variance is a special case of covariance. Look at the formulas for variance
and covariance. You will see that

cov(X,X) = var(X) .

The variance is the expected value of a positive quantity. Therefore var(X) > 0
unless X is not random. If X is constant, then X = µX and (X − µX) = 0
always. This makes the expected value equal to zero. Otherwise, the expected
value is positive. Any truly random variable is positively correlated with itself.

An asset allocation is a sum of several investments. The total return is the
sum of the returns on the individual investments. These individual returns are
correlated random variables. The variance of the total return, which represents
its risk, is the variance of a sum of correlated random variables. We need a
formula for this.

Suppose X and Y are correlated random variables. The mean of Z = X+Y
is

µX+Y = E[X + Y ] = µX + µY .

The variance of Z = X + Y is

var(X + Y ) = E
[

(X + Y − µX+Y )
2
]

= E
[

([X − µX ] + [Y − µY ])
2
]

= E
[

(X − µX)2 + 2(X − µx)(Y − µY ) + (Y − µY )2
]

= E
[

(X − µX)2
]

+ 2E[ (X − µX)(Y − µY )] + E
[

(Y − µY )2
]

var(X + Y ) = var(X) + 2cov(X,Y ) + var(Y ) . (1)

A variance is like a square. The variance sum formula is like the square sum
formula (the binomial theorem) except that X2 becomes the variance and XY
becomes the covariance.

We need the formula for the variance of a sum of n random variables. Sup-
pose Xj are random variables (all correlated) and wi are weights (numbers that
are not random). The weighted sum is

Z =

n∑
j=1

wjXj . (2)

In the application, Xj represents the value of one “share” (economists call it
one unit) of asset j. The weight wj is the number of shares of asset j in the
portfolio. The variance of Z represents the risk of this portfolio. The formula
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that corresponds to (1) involves the variances and covariances. We use a slightly
different notation:

σjj = σ2
Xj

= var(Xj)

σjk = cov(Xj , Xk) .

Here is a trick with the indices that leads to a simple formula for var(Z).
Suppose aj are numbers and

s =

 n∑
j=1

aj

2

.

This can be written as

s =

 n∑
j=1

aj

( n∑
k=1

ak

)
.

The two sums on the right are equal. The only difference is the letter we use to
represent the summation index. But the second sum can be written as

s =

n∑
j=1

n∑
k=1

ajak . (3)

The square of a single sum has been written as a double sum of all products
ajak.

Suppose n = 2, so s = (a1 + a2)2. The double sum formula is

s = a1a1 + a1a2 + a2a1 + a2a2

= a21 + 2a1a2 + a22 .

The coefficient 2 in the variance sum formula (1) arises from the fact that
a1a2 = a2a1. In the full sum (3), the diagonal terms are the ones with j = k.
These have value a2j . The off diagonal terms are the ones with j 6= k. These
come in pairs, since ajak = akaj . We could combine these by taking only the
term with k > j (or j > k, but not both). The result would be a sum of diagonal
and off diagonal terms, with the factor of 2:

s =

n∑
j=1

a2j + 2

n−1∑
j=1

n∑
k=j+1

ajak .

This formula requires some attention to detail in the off diagonal sum. The j
variable goes from j = 1 to j = n − 1 because there are no off diagonal terms
with j = n and k > j. The k variable starts at j + 1 because that is the first
off diagonal term. We often prefer the formula (1) because it is simpler. But
whenever you use it, keep in mind that each off diagonal term appears twice.
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Back to portfolios. A general portfolio is a weighted sum of assets (2). The
expected value of the portfolio is

µZ =

n∑
j=1

wjµj .

To see this,

µZ = E[Z]

= E

 n∑
j=1

wjXj


=

n∑
j=1

wjE[Xj ] (Expectation is linear)

µZ =

n∑
j=1

wjµj .

The variance of the portfolio is

var(Z) =

n∑
j=1

n∑
k=1

wjwkcov(Xj , Xk) =

n∑
j=1

n∑
k=1

wjwkσjk . (4)

The algebra behind this uses the square of the sum trick (3):

var(Z) = E
[

(Z − µz)
2
]

= E


 n∑

j=1

wjXj −
n∑

j=1

wjµj

2


= E


 n∑

j=1

wj (Xj − wjµj)

2


= E

 n∑
j=1

wjXj − wjµj

 n∑
j=k

wkXk − wkµk


= E

 n∑
j=1

n∑
k=1

wjwk (Xj − µj) (Xk − µk)

 (double sum trick of (3))

=

n∑
j=1

n∑
k=1

wjwkE[ (Xj − µj) (Xk − µk)] (expectation is linear)

var(Z) =

n∑
j=1

n∑
k=1

wjwkσjk . (the formula (4))
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The covariances σjk form the elements of an n× n symmetric matrix called
the covariance matrix (or the variance covariance matrix, because the diagonal
elements σjj are variances). We will call this matrix C. The (j, k) entry of C is
σjk. It will be helpful to write the variance formula (4) in the notation of linear
algebra. Let w ∈ Rn be the n−component column vector whose components
are the weights wj :

w =


w1

w2

...
wn

 .

The transpose of w is the row vector with the same components

wt = (w1, w2, · · · , wn) .

The sum in (4) may be written

var(Z) = wtCw . (5)

This abstract version of the variance formula (4) simplifies the analysis and the
programming.

We verify the matrix/vector formula (5) first for n = 2 and then in general.
For n = 2, the calculation is (note σ12 = σ21 = cov(X1, X2)):

wtCw =
(
w1 w2

)(σ11 σ12
σ12 σ22

)(
w1

w2

)
=
(
w1 w2

)(σ11w1 + σ12w2

σ12w1 + σ22w2

)
= w1 (σ11w1 + σ12w2) + w2 (σ12w1 + σ22w2)

= w2
1σ11 + 2w1w2σ12 + w2

2σ22 .

This is the same as the formula (4).
For general n, define the vector v = Cw. The components of v are

vj =

n∑
k=1

σjkwk .

We also have (because matrix/vector multiplication is associative)

wtCw = wtv

=

n∑
j=1

wjvj

=

n∑
j=1

wj

(
n∑

k=1

σjkwk

)

=

n∑
j=1

n∑
k=1

wjwkσjk .
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This shows that the “scalar sum” form (4) is equivalent to the matrix/vector
form (5).

Basic one period model

In the simplest one period model, a total wealth M is to be allocated among n
risky assets. The price of asset j is 1 today and Xj “tomorrow”. We may invest
wj on asset j, which costs wj today and yields wjXj tomorrow. The numbers Xj

are random and not known at the time the asset allocation is made. The only
information we have is the expectations (means), variances, and covariances.
The means are

E[Xj ] = µj . (6)

The variances are
var(Xj) = σ2

j = σjj .

The covariances are
cov(Xj , Xk) = σjk .

The wealth “tomorrow” is

Z =

n∑
j=1

wjXj .

The expected wealth tomorrow is

µZ = E[Z] =

n∑
j=1

µjwj = µtw .

Here, µ ∈ Rn is a column vector with components µj :

µ =


µ1

µ2

...
µn

 .

The variance of the wealth tomorrow is (see the previous section)

σ2
Z = var(Z) = wtCw .

The entries of C are the covariances σjk.
The goal of mean variance analysis is to maximize the expected return µZ

with a constraint on the variance σ2
Z and the total investment

M =

n∑
j=1

wj .

This is equivalent (we will see) to minimizing the variance with a constraint on
the expected return and the total investment. We want to write everything in
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the language of linear algebra, vectors, matrices and such. The total investment
constraint is just a sum, but it can be put in linear algebra form using the vector
of all ones:

1 =


1
1
...
1

 .

The total investment constraint (also called the budget constraint may be written

M = 1tw .

Gradients and Lagrange multipliers

Cauchy Schwarz inequality

The Cauchy Schwarz inequality is a simple theorem about vectors and inner
products in n dimensional space. Suppose u and v are n component column
vectors, the inequality is

(utv)2 ≤ (utu) (vtv) . (7)

Moreover, the inequality is strict (meaning (utv)2 < (utu) (vtv)) unless u and
v are “in the same direction”. If u 6= 0 and v 6= 0, being in the same direction
means that there is a scaling s so that u = sv. In components, this means that
ui = svi for i = 1, . . . , n.

The proof of the Cauchy Schwarz inequality is a clever trick. Look at

m(s) = (u− sv)t(u− sv) = utu− 2sutv + s2vtv .

“Clearly” m(s) ≥ 0 for all s, because if x is any vector, then xtx =
∑
x2i ≥ 0.

Maybe there is an s∗ so that m(s∗) = 0. In that case u− s∗v = 0, which means
u and v point in the same direction. Otherwise m(s) > 0 for all s.

Choose s∗ to minimize m. Take the derivative with respect to s and set it
to zero. The result is

−2utv + 2s∗v
tv = 0 =⇒ s∗ =

utv

vtv
.

We calculate

m(s∗) = utu− (utv)
2

vtv
.

This is positive (because m(s) is always positive), so

utu >
(utv)

2

vtv
=⇒ (utu)(vtv) > (utv)2 .

This is the Cauchy Schwarz inequality. It is strict – we have >, not ≥. It is
strict because m(s∗) > 0, which is because u and v are not in the same direction.
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The gradient vector and descent direction

Suppose f(x) = f(x1, . . . , xn) is a function of n variables. You can think of
the variables xj as the components of an n component column vector x. The
gradient of f is the n component column vector made of first partial derivatives:

∇f(x) =



∂f
∂x1

...
∂f
∂xj

...
∂f
∂xn


Recall from multivariate calculus that the gradient leads to a first derivative
approximation to f . Consider two nearby “points” x and x+ ∆x. The column
vector ∆x has components ∆xj . Then

f(x+ ∆x)− f(x) ≈
n∑

j=1

∂f(x)

∂xj
∆xj .

In vector notation, this may be written

f(x+ ∆x)− f(x) ≈ (∆x)
t∇f(x) . (8)

A constrained optimization problem is to find the maximum or minimum of
f(x), but with constraints that may be written

gi(x) = ai , for i = 1, . . . k .

Constraints like this are equality constraints. There are also inequality con-
straints, which take the form gi(x) ≥ ai. Basic mean/variance analysis involves
only equality constraints.

An optimality condition is an equation that we can solve to help find the
optimal x. We write x∗ for “the” optimal x (there may be more than one). For
unconstrained optimization (no constraints, k = 0), the optimality condition is
that ∇f(x∗) = 0. To see this, suppose ∇f(x∗) 6= 0. Choose a small step size, s,
and take ∆x = s∇f(x∗). The first derivative approximation formula gives

f(x∗ + ∆x)− f(x) ≈ s (∇f(x∗))
t∇f(x∗) .

The inner product on the right is

(∇f(x∗))
t∇f(x∗) =

n∑
j=1

(
∂f(x∗)

∂xj

)2

.

This is positive unless all the partial derivatives are zero. This means we can
make f a little bigger by taking s > 0 and f a little smaller by taking s < 0.
Either way, x∗ is not the optimal x.
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You can imagine that f(x) is the “height” of a surface over the “x plane”
(though x may have more than two components). Then ∇f(x) is a vector that
points in the steepest uphill direction. If ∇f(x) 6= 0, then you are on the side of
a hill. The function gets bigger (higher) in one direction and lower in the other
direction.

For minimization, the negative gradient −∇f is a descent direction, f de-
creases if you go in that direction, at least if you don’t go too far.

One equality constraint

The situation is more complicated for equality constrained optimization. Sup-
pose that there is only one constraint g(x) = a and that x∗ satisfies it. We
want to see whether there are nearby x values that satisfy the constraint and
have better (larger or smaller) f . For this, we need to choose ∆x that stays
on the constraint surface (the set of x values that satisfy the constraint). If we
go from x∗ to x∗ + ∆x, the constraint changes according to the first derivative
approximation

g(x∗ + ∆x)− g(x∗) ≈ (∆xt)∇g(x∗) .

We want to see whether ∆f = f(x+∆x)−f(x) can be made positive or negative
with perturbations ∆x that stay on the constraint surface:

(∆xt)∇g(x∗) = 0 . (9)

In two dimensions, the constraint set g(x) = a is a curve, ∇g(x∗) is normal
to this curve, the condition (9) says that ∆x is perpendicular to ∇(x∗). This
means ∆x is tangent to the constraint curve. In more than two dimensions,
there is a constraint surface and (9) says that ∆x is tangent to this surface.

Now suppose ∇f(x∗) 6= 0 and ∇g ∗ (x∗) 6= 0 and try to find a direction
tangent to the constraint surface, condition (9), that improves f . One way to
seek such a ∆x is to modify∇f(x∗) to get something that satisfies the constraint.
We can subtract the “component” of ∇f in the ∇g direction. That is, try

∆x = s(∇f(x∗)− a∇g(x∗)) .

Substituting this into the constraint condition (9) gives

(∇f(x∗)− a∇g(x∗))
t∇g(x∗) = 0 .

This leads to

a =
∇f t∇g
∇gt∇g

.

And from there

∆x = s

(
∇f − ∇f

t∇g
∇gt∇g

∇g
)
.
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and

∆f ≈ s
[
(∇f)

t
(∇f)−

(
∇f t∇g
∇gt∇g

)
(∇g)

t∇f
]

= s

[
∇f t∇f −

(
(∇f t∇g)

2

∇gt∇g

)]
.

The Cauchy Schwarz inequality above says that the quantity in square braces
[· · · ] is positive unless ∇f is in the same direction as ∇g.

Here’s the conclusion: If there is a λ with ∇f(x∗) = λ∇g(x∗), fine. Oth-
erwise, it is possible to move x along the constraint surface g(x) = a to either
increase or decrease f . If x∗ maximizes or minimizes (optimizes) f on the con-
straint surface, then

∇f(x∗) = λ∇g(x∗) .

This λ is the Lagrange multiplier.

Lagrange multipliers for mean variance allocation

Suppose x ∈ Rn is an n component vector. You can think of x as a column vector
if you’re going to do linear algebra on it (multiply by a matrix). Otherwise,
just know that x consists of the numbers x1, . . ., xn. Mathematicians use the
term scalar for numbers, or one component vectors. (The term comes from
physics, where it means something more specific.) Suppose f(x) is a scalar
valued function of the vector x. That means that the numbers x1, . . ., xn are
combined in some way to get a single number f(x). For example, if a1, . . ., an
are other numbers, then there is the linear function

f(x) = a1x1 + · · ·+ anxn = atx .

The expected return function is a linear function of the portfolio weights. The
budget constraint also involves a linear function of the weights, with the specific
coefficient vector a = 1.

A quadratic function is defined by an n× n symmetric matrix A as

f(x) =

n∑
j=1

n∑
k=1

ajkxjxk = xtAx .

This formula doesn’t require A to be symmetric. It makes sense even if ajk 6= akj
(which is the same as A 6= At).
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