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Logic, programming practice and style

This is midway trough the quick introduction to R. You should test your
understanding by typing in the examples here and changing them in small ways.
There are three “keys” to being good at coding:

• Understand the programming language as deeply as you can. That means
environments, argument passing, objects (variables), etc. The “for dum-
mies” approach of copying examples from a book will make you a bad
coder.

• Always follow rules of software practice and coding style.

• Practice.

Reserved words

A reserved word is a word that is part of the language and cannot be used
as a variable (object) name. Suppose, for example, you want variables df for
“domestic funds” and if for “international funds”. Here’s what happens when
you try that at the command line:

> df = 4

> if = 5

Error: unexpected ’=’ in "if ="

>

The word if (the English word “if”, see below) is a reserved word that cannot
be used as the name of an object. You can get a list of all reserved words by
typing help(reserved) [enter] at the R command prompt. You don’t have
to memorize the list. You will soon know most of the words on it just from
using R.

Every word in the reserved-word list is there for a reason. Often, it’s because
the word tells the R interpreter something about what kind of command it is. For
example, the reserved word function tells the interpreter that you are defining
a function. If function were the name of something, then the command

> f = function(x) { . . .

would be ambiguous. It could mean either that f is a variable whose value is
function(x), or it could mean that f itself is a function. There are different
kinds of commands: assignments, expressions, definitions, etc. The interpreter
uses reserved words to tell what kind of command it is. Several reserved words,
including if and TRUE, are described below. It should be clear in each case
why the word has to be reserved. This explains the error message: Error:
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unexpected ’=’ in "if =". As will be clear below, what comes after if must
be a logical expression, not an = sign. The = is unexpected.

Programming languages also have keywords. This is not the same as reserved
words, but many people (including me) often say “keyword” when we should
say “reserved word”.

Logical variables and expressions

An object (also called variable) in R can have type logical. Other types that
we have seen are double and integer (two kings of number), and character

(a character string). A logical variable can have only two values, TRUE or FALSE.
Here, we assign the object (variable) called x the value TRUE. The R interpreter
then gives x the type logical.

> x = TRUE

> typeof(x)

[1] "logical"

A comparison expression has a logical value (TRUE or FALSE). Comparisons
test whether two numbers are equal, or whether one is larger or smaller than
the other. The comparison expression ( x > y ) [enter] evaluates to TRUE if
x > y and evaluates to FALSE if x < y or x = y. You test for equality (is it true
that x = y?) using two “equals” signs, as ==, not one. The “equals” sign in R

(and most other languages) is assignment. But you can’t assign 3 a value, so
this command produces an error message. The ≤ test is <= and the ≥ test is
>=. Any comparison expression evaluates either to TRUE or to FALSE.

> ( 2 > 3 )

[1] FALSE

> ( 2 < 3 )

[1] TRUE

> ( 3 > 3 )

[1] FALSE

> ( 3 = 3 )

Error in 3 = 3 : invalid (do_set) left-hand side to assignment

> ( 3 == 3 )

[1] TRUE

> ( 3 >= 3 )

[1] TRUE

> ( 2 <= 3 )

[1] TRUE

>

There are more comparison operations than these. There are comparison
operators for character strings. A web search will tell you how to do that kind
of thing.
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Besides comparisons, there are logical operations, called not, and and or. If
x is a logical variable, then (not x) is the opposite of x. If x is true, then (not x)
is false, and conversely. Not, in R is !. Here is an illustration of this:

> x = ( 3 > 2)

> x

[1] TRUE

> !x

[1] FALSE

The logical operation and is & in R. If x and y are logical variables, then x

& y evaluates to TRUE if x and y are both TRUE. Otherwise x & y evaluates to
FALSE. The logical operation or is | in R (a vertical bar). The expression x | y

evaluates to TRUE unless both x and y are FALSE. Here is an illustration

> x = TRUE

> y = TRUE

> z = FALSE

> x&y

[1] TRUE

> x&z

[1] FALSE

> x|y

[1] TRUE

> x|z

[1] TRUE

> z|z

[1] FALSE

You can make complicated expressions with comparisons and logical opera-
tions. For example, this tests whether x ∈ [0, 1). Note that x = 1 is not allowed
but x = 0 is allowed. In logical expressions like this always use parens like this.
It is very easy to get the wrong result because R precedence rules are weird.
Always use parens for logical expressions (see below).

> x = 1.5

> ( x >= 0 ) & ( x < 1 )

[1] FALSE

Conditional execution, if test

Conditional execution means that script may or may not execute a command,
depending on some test. You can do this in R with a command that starts with
an if test. (We will see other ways.) It looks like:

if ( [logical value] ) { ... [code block] ...}

3



If the logical value in the if test is TRUE, then the commands in the code
block are executed. If the logical value is FALSE, then the code block is skipped.
If it’s a script (it usually is), the R interpreter executes the next command after
the close curly that ends the code block.

Figure 1 has an example, which is a function that returns
√
|x|. The first

command in the function definition is an if test. The comparison x < 0 evaluates
to TRUE if x < 0. If it evaluates to true, then the code block is executed. In
this case, it just replaces x with −x. That way, if x is negative, it is replaced
with −x, which is |x|. If x ≥ 0, the code block is not executed, and x stays x,
which is |x|. Either way (TRUE or FALSE), the next command executed is y =

sqrt(x).

Figure 1: The R editor window where the asqrt() function is defined

Here is an illustration of asqrt() in action.

> source("asqrt.R")

> T = 4

> asqrt(T)

[1] 2

> T = -4

> asqrt(T)

[1] 2

> T

[1] -4

The first command reads the definition of asqrt() into the environment. The
third command passes the value of T to this asqrt() function. Inside the body
of the function (the curly braces that enclose the function commands) that value
will be called x. Our asqrt() gives the right answer, which is 2. Next, we take
asqrt(T) with T = −4. In this case, the function body of asqrt() replaces x
with −x. But the value of T is not changed (see the last two lines). Argument
passing in R is call by value. This means that the outside value of the calling
argument (which is called T outside) is copied into a local variable that exists
only in the environment of the function body. For that reason, changing the
value of the local variable x does not change the outside variable T.
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The function asqrt() illustrates that code blocks can be nested. This means
that one code block can contain another code block. (A code block is a “nest”
that can hold other code blocks?) In Figure 1, there is a code block that begins
with an open curly on line 4 and ends with the close curly on line 10. This is
the outer block. Inside this code block is a nested code block that starts with
the open curly on line 5 and ends with the close curly on line 7. This is the
inner block. Code blocks can be nested more than this, with inner blocks having
inner-inner blocks and so on.

While loops

A loop is a code block that is executed repeatedly, until it is done. It is called
loop because of the way it looks in a flow chart (Do a web search to see what
flow charts look like.) The do loop we saw before is for situations where you
know in advance how many trips through the loop you need. The do loop does
one trip through the loop for every data value in an array. The while loop is
for situations where you don’t know in advance how many trips through the
loop you will need. The while loop continues “looping” as long as some logical
variable is TRUE or some expression evaluates to TRUE. It looks like

while ( [logical expression] ) { ... [code block] ... }

The R interpreter evaluates the logical expression. If it’s TRUE, it executes the
commands in the code block. This is like if. But then it evaluates the logical
expression again. If it evaluates to TRUE again, it evaluates the code block again.
This continues until the logical expression evaluates to FALSE.

Figure 2 has an example. It answers the question: how many years does it
take to multiply an investment by a factor M with simple interest rate r per
year? It assumes (“without loss of generality”) that the initial investment is 1.
It keeps multiplying the value V by (1 + r) until it exceeds the target M . Then
it stops and returns V . Lines 5 and 6 are initializations. Note the comments
that explain the roles of the variables. Line 7 starts the while loop. The loop
is executed as long as V < M , which means that the value after T years is less
than the target. The first command in the loop body formats a string for output.
The number T (the number of years) is printed in d format, which we haven’t
seen until now. This prints an integer (“d” is for “decimal”?) with no decimal
point, which is how you want the number of years to look. It prints the value in
the f format we saw in the first handout. Lines 10 and 11 update T and V for
the passage of one year. This process will continue, with V steadily increasing
each trip through the loop, until the logical expression ( V < M ) evaluates to
FALSE.
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Figure 2: The R editor window where the ci() function is defined

Here’s what happens when we try it at the command line. As always, we
first have to read the definition of ci() into the environment. Then we use the
function with r = .05 (which is 5% interest per year) and M = 2, which asks
how many years it takes to double your money. The first time through the loop,
T = 0 and V = 1. Then (though this is “silent” for now) V is replaces with
(1 + r)V and T is replaced with T + 1 (we say T is incremented). The next
trip through the loop we have T = 1 and V = (1 + r) = 1.05. The body of the
loop sets V to (1 + r)2 = 1 + 2r + r2 = 1 + .1 + .0025 = 1.1025. The test that
controls the while loop still evaluates to TRUE because 1.1025 < 2. The loop
keeps executing and V slowly increases until the 14th through the loop. After
printing, V gets the value 2.079. With this value, V < M evaluates to FALSE

and the looping stops.
The advantage of formatted output is that these numbers line up and are

easy to read. You can see the year in d format without a decimal point and V
in f format with a decimal point and two digits after the decimal point. If you
want to know V more accurately, you could ask for 4 digits after the decimal
point by replacing %6.2f with %8.4f. You have to increase the total number of
characters from 6 to 8 (two more characters) when you ask for two more digits
after the decimal point.

6



> source("ci.R")

> ci(.05, 2)

after 0 years, the value is 1.00

after 1 years, the value is 1.05

after 2 years, the value is 1.10

after 3 years, the value is 1.16

after 4 years, the value is 1.22

after 5 years, the value is 1.28

after 6 years, the value is 1.34

after 7 years, the value is 1.41

after 8 years, the value is 1.48

after 9 years, the value is 1.55

after 10 years, the value is 1.63

after 11 years, the value is 1.71

after 12 years, the value is 1.80

after 13 years, the value is 1.89

after 14 years, the value is 1.98

[1] 2.078928

Sometimes you don’t find until the end of the loop body whether you’re
looped enough. There’s a natural example of this in assignment 3. One way to
handle this is to make a logical variable called, say, continue. You set continue
= TRUE before going into the while loop. You put an if test at the bottom of
the loop body to see whether you’ve looped enough. If you have looped enough,
set continue = FALSE. Figure 3 has the loop done this way. At line 10, the
continue variable is initialized to TRUE. Line 17 has an if test to see whether
the loop termination criterion is satisfied. The termination criterion is that the
loop should stop with V > M . If the criterion is satisfied, you get some more
output (lines 19 and 20) and then continue is set to FALSE (line 21). This
stops the loop because the next time line 10 is evaluated, the logical expression
is FALSE.
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Figure 3: The R editor window where the cic() function is defined

Here’s what happens when you run this. Notice that (see line 12 and line
19), we’ve asked for four digits instead of 2. This shows that (1 + r)2 is actually
1.1025, as the algebra above predicts (never trust algebra not confirmed by
computation).

> source("cic.R")

> cic(.05,2)

after 0 years, the value is 1.0000

after 1 years, the value is 1.0500

after 2 years, the value is 1.1025

after 3 years, the value is 1.1576

after 4 years, the value is 1.2155

after 5 years, the value is 1.2763

after 6 years, the value is 1.3401

after 7 years, the value is 1.4071

after 8 years, the value is 1.4775

after 9 years, the value is 1.5513

after 10 years, the value is 1.6289

after 11 years, the value is 1.7103

after 12 years, the value is 1.7959

after 13 years, the value is 1.8856

after 14 years, the value is 1.9799

get a factor of 2.0000 in 15 years

[1] 2.078928
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Programming practice, programming style

Programming practice and programming style refer to things you do or don’t
do in order to make your code more likely to be correct and more useful to
others in your team. Bad programming practice (examples below) make it more
likely that your code has subtle bugs (mistakes) that can be time consuming
to find. Bad programming style can make your code much harder for others
to understand and modify. Even if you’re on your own (a team of one), bad
programming style can build up to make a code that is frustrating to you.
Good programming practice and programming style asks the coder to spend a
few more minutes when writing the code for the first time. The time saved in
the long run usually makes this worthwhile.

In this class, you will be asked to hand in your code and output for each
assignment. You will lose points on the homework if the person grading it doesn’t
like the programming practice or style. In a technical job interview, you can
easily lose a job offer if your code looks bad. People out there developing software
in the real world have all had the team-mate from hell who writes code that
seems to be technically correct but in fact either has subtle bugs or is very time
consuming to understand. They won’t want you on their team.

Now would be a good time to read the R style guide posted on the resources
page of the class web site. Here are some rules of style that you should keep in
mind when coding.

• Put comments at the top of any function saying what it does

• Use white space (spaces or blank lines) to make the structure of the code
clearer. Figure 3 as lots of blank lines to make the control lines (line 5,
line 11, line 17) easy to spot.

• Indent the commands in any code block. The official R indentation is four
spaces, but you can use anything between 2 and 5.

• Put the close curly on its own line. This also helps code blocks stand out.

• Comment any variable with something helpful. Example of an unhelpful
comment: T = 0 # set T to zero.

• Make output easy to read – nicely lined up in columns, an intelligently
chosen number of digits. Output like L = 3.141592653589793 looks silly
in most situations.

• Use “defensive programming”.

• No hard wired constants (see “Infinite loops” for an example).

Defensive programming

Defensive programming (my term) means keeping in mind the things that can
go wrong and doing something about them. This won’t always prevent bugs,
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because every program has bugs. But it can make bugs less destructive and
easier to find. There’s a TV comedy image of a nerd who constantly imagines
disasters that are about to happen. People like that make good programmers.

Argument range checking

The function in Figure 3 has an arguments r that must be positive and M that
must be larger than one. Argument checking could involve putting an if test
at the top of the function and printing an error message if r ≤ 0 or M ≤ 1.
The error message should be informative, so that you have some idea what went
wrong when you see it. The error message should say the name of the function
(cic()), the problem (r ≤ 0) and the value of r (r = −2 in this case).

Infinite loops

A while loop is infinite if it never stops or if it takes too long to stop. For
example suppose you give r = −.1 to the cic() function of Figure 3. The
number V starts at V = 1 and keeps getting multiplied by 1+r = .9. Multiplying
by .9 will never make V ≥M = 2, so the loop continues forever. There’s a panic
that sets in when you run your program and realize it’s in an infinite loop. How
do you stop it? Do you have to quit the R app and restart it?

> cic(-.1, 2)

after 0 years, the value is 1.0000

after 1 years, the value is 0.9000

after 2 years, the value is 0.8100

after 3 years, the value is 0.7290

after 4 years, the value is 0.6561

after 5 years, the value is 0.5905

after 6 years, the value is 0.5314

.

.

.

Figure 4 is a screen shot of the R command line console as it looks on my imac.
It kept going, multiplying by 1 + r = .9 each time, until I clicked on the red
STOP sign in the top left of the R console.
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Figure 4: The R console window showing an infinite loop. I clicked on STOP

after 442019 trips through the loop.

A defensive programmer will protect against infinite loops. One way is to
insert an arbitrary maximum number of trips through the loop. In the cic()

function, it might be wise to stop if the target M isn’t reached in 1000 years.
Figure 5 has a version of the cic() function with these defensive features added.
Lines 10 and 15 start if tests to check that r > 0 and M > 1. There are error
messages if the conditions are violated. Lines 13 and 18 say to return the value
0. More importantly here, they say to stop executing commands in the function.
This keeps the function from “operating” with bad argument values. Line 25
defines the maximum number of trips through the loop (more on this below).
Line 38 is the if test to see whether you’ve reached that maximum number. If
you have, print an error message and stop looping (set continue to FALSE).

It may seem simpler not to define the variable Tmax (line 25), and just make
line 38 say: if ( T > 1000 ){. This would do the same thing, but it’s bad
programming practice because the constant is hard wired. The term “hard
wired” comes from electrical wiring (or cabling, these days). Connections are
hard wired if they are fastened in with bolts or something to make sure they
connections are secure. A hard wired connection is hard to change if it needs to
be changed. In programming, a “hard wired” number is put in so that it is hard
to change. This isn’t the case here. It’s just as easy to change 1000 to 2000 in
Tmax = 1000 as in if ( T > 1000){. But often the parameter appears in more
than one place. If you change it, you have to remember to change it everywhere.

11



It’s very common to get that wrong. Also, line 25 with its comment makes it
easier to see in reading the program that there is a maximum trip count and
how to change it.

Figure 5: The code from Figure 3 with defensive features.
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