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Compound interest

This is an upper level undergraduate applied math class. An important
part of any such class is learning to use mathematical tools in modeling and
estimation. Compound interest is a good place to start. The applied math tool
is Taylor series approximations. Not the infinite sum, but the approximation
from just one or two terms.

The book describes the value of a dollar after T years with interest rate r
compounded m times per year as

V (m, r) =
(

1 +
r

m

)mT

.

The continuous compounding limit is the limit m→∞. The book mentions the
theorem that

lim
m→∞

(
1 +

r

m

)mT

= erT .

One point of this theorem, for an applied mathematician doing finance, is that
the exponential formula on the right is simpler and easier to use than the power
formula on the left.

You should know when an approximation is applicable and how accurate it
is. These are two ways of stating the same issue. You can use an approximation

if it is accurate enough for your application. So, how close is
(
1 + r

m

)mT
to erT

for some specific m? Here’s a trick to find out: You’re raising something (· · · )
to a high power, which is mT . You can see what’s happening by expressing
it as the exponential of something. If a > 0 is any number, and log(a) is the
“natural log’, the log base e, then

a = elog(a) .

Therefore
1 +

r

m
= elog(1+

r
m ) .

When m is large, and if r is not too large, then r
m is small. If r

m were zero, then
we would have log(1) = 0. Since r

m is small, log(1 + r
m ) should be close to zero.

We find out how close using a Taylor series approximation. Suppose x is
small (close to zero). If f(x) is a “good” function (most functions are good in
this sense unless you know they’re not), then

f(x) ≈ f(0)

f(x) ≈ f(0) + xf ′(0)

f(x) ≈ f(0) + xf ′(0) +
1

2
x2f ′′(0)

etc.
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The fancier approximations are more accurate, but we want to use the simplest
one that suffices for our purpose.

We have f(x) = log(1 + x), and we will take x = r
m . The derivatives are

f(0) = 0

f ′(x) =
1

x
, f ′(0) = 1

f ′′(x) =
−1

x2
, f ′′(0) = −1

etc.

We write out the Taylor series approximations concretely, for f = log and
x = r

m :

log
(

1 +
r

m

)
≈ 0

log
(

1 +
r

m

)
≈ r

m

log
(

1 +
r

m

)
≈ r

m
− 1

2

r2

m2

etc.

If we use the first approximation, we get(
1 +

r

m

)mT

≈ e0·mT = e0 = 1 .

This isn’t very useful for compound interest. The second approximation gives(
1 +

r

m

)mT

≈ e
r
m ·mT = erT .

This is more useful. It gives the exponential approximation to the compound
interest formula. But it doesn’t say how accurate this approximation is.

The third formula gives(
1 +

r

m

)mT

≈ e

(
r
m−

1
2

r2

m2

)
·mT

= erT−
1
2

r2T
m

= erT e−
1
2

r2T
m .

This says that the continuous compounding exponential approximation differs
from the actual compound interest formula by a factor of

e−
1
2

r2T
m .

First, note that this is less than one because it’s the exponential of something
negative. It should be less than one, because the value increases when you
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compound more. If you compound infinitely, the value should be a little bigger
than if you compound m times.

But how much less than one? We answer that question with another Taylor
approximation, this time for the exponential function. We have

f(x) = ex , f(0) = 1

f ′(x) = ex , f ′(0) = 1

f ′′(x) = ex , f ′′(0) = 1

etc.

This gives the sequence of approximations to the exponential function

ex ≈ 1

ex ≈ 1 + x

ex ≈ 1 + x +
x2

2
etc.

We apply these with x = −r2T
2m . The first approximation gives no information.

The second one is

e
−r2T
2m ≈ 1− −r

2T

2m
.

This says that e
−r2T
2m is less than one by about −r

2T
2m . That’s what we need to

know. Now we go back to our approximation earlier and put in this information.
The result is (

1 +
r

m

)mT

≈ erT
(

1− r2T

2m

)
.

For example, suppose r = .05 (five percent interest per year) and T = 10
(ten years) and m = 4 (four compoundings per year). The exact value at the
end of ten years is (

1 +
.05

4

)4·10

= 1.6436194634870103 .

The exponential approximation is

e.05·10 = e.5 = 1.6487212707001282 .

The exponential is higher than the exact amount by

1.6487212707001282− 1.6436194634870103 = 0.005101807213117926

That seems accurate at first, but it is off by 51 basis points (a basis point is
one precent of one percent), which can be a lot in some high-tech finance. Our
Taylor approximation predicts that the exponential will be off by

e.05·10
(.05)2 · 10

2 · 4
= 0.005152253970937902 .

This is also 51 basis points.
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