Mathematics of Finance, Courant Institute, Spring 2019
https://www.math.nyu.edu/faculty /goodman/teaching/MathFin2019/MathFinance.html

Editors, Arrays and loops in R

These notes are for someone who can use a computer generally but has not
done any programming or done other serious computer work. Everything below
is here because I've helped a student do it. Just move quickly through the things
you already know.

Scripts and editors

Typing at the command line can be frustrating. A script is a sequence of com-
mands prepared in an editor and saved in a file. All you do from the command
line is run the script. You use the editor to create and modify the script. The
work cycle of programming, what programmers do as they’re programming, is:
edit, save, run, look at the output, decide what needs changing and do it again.

An editor is a program, like Microsoft Word, that allows you to create a file
that contains text. But Word is inappropriate for programming (creating and
modifying scripts). If you don’t believe me, try it. Instead, you should find an
editor designed for creating code (a script). I use xcode, which is an app that
runs on my imac. Everyone who codes has a personal preference, and they’re
all different. If you do a web search on “what is the best editor for coding”, you
will start to get a feel for geeks arguing over features of code editors. It will help
for you to see some of the issues they discuss. Some of the fancy ones, emacs
being an extreme example, take a while to learn and may slow down your work
in the beginning.

This handout will explain how to use the editor that comes with the R app
on my imac. I believe/hope that this editor is available to anyone with the R app
on any platform. This editor lacks many of the features the geeks like, such as
syntax highlighting. This should not slow you down much if you're a beginner.
If you’re not a beginner, you probably already have a favorite editor — feel free
to use that.

Before you start editing, you have to be aware of where in the computer
file system the editor and the R command line will look for your files. The
command getwd() [enter] (for “get working directory”) returns the path to
to the directory (also called folder) the command line and the editor will use.
For me, it went like this:

> getwd()
[1] "/Users/jg/Desktop/notes/MathFin2019/codes"
>

The path above says that there is a top level directory (folder) named Users
on my computer. That directory has files in it. One of those files is the direc-
tory jg (my initials). The directory jg has in it a directory called Desktop.

Continuing, Desktop has notes (files where I prepare for classes), notes has
MathFin2019 (for this class), and MathFin2019 has codes, where the R scripts
(codes) for this class will go. The path is the sequence of directories Users ->
jg —-> Desktop -> notes -> MathFin2019 -> codes. It describes the loca-
tion, in my computer file system, of the files I will create for this class. You
should decide where you will put your R code files for this class and create a
directory (folder) in the appropriate place.

The R app allows you the get around, to navigate, your file system. When 1
launch my R app, I get

> getwd()
[1] "/Users/jg"
>

This directory is too high level in my file system. Putting all my files in
this directory would be chaos. It would be hard to find anything because there
would be too many files. I need to go to a subdirectory, which is a file in jg that
is a directory. One of these subdirectories is Desktop. The basic way to do this
in R is illustrated here

> path = "/Users/jg/Desktop"
> setwd(path)

> getwd ()
[1] "/Users/jg/Desktop"
>

The first line creates a character string (something in quotes) that is the
path to the desired directory. (It won’t work without the quotes — try it.) The
second line uses setwd() (for “set working directory) to add Desktop to the
path. I created the top line "/Users/jg/Desktop" by pasting Desktop on the
end of /Users/jg. I repeat this to go down to notes, which is a subdirectory of
Desktop. With copy-paste I create path = "/Users/jg/Desktop/notes", then
the command setwd(path) [enter] puts me in the notes subdirectory. Even-
tually, I get to the desired directory /Users/jg/Desktop/notes/MathFin2019/codes.

This is a clumsy way to create a character string path that is the path to the
desired directory. It may be quicker to type the whole path at once. This will
work if you can type accurately. There probably are other ways that I don’t
know about. Everyone does things a little differently — and coding geeks argue
about the best way to do things like this.

My R app opens a window called the R Console. This console has the R
command window you’ve been using in the middle. There are some icons around
the side, including one that says “Open document in editor” if you mouseover
(put the cursor in the icon). Click on this icon and the R files window opens. In
the beginning, you have no files (probably), so you click on file and then New
Document somewhere. It’s the top bar on my imac with the R app is running. I
don’t know where it is in the Windows version. An editor window should open.
It should be blank. Figure[l|has a screen capture of my file window with two files

in it. Figure [2| has a screen capture of a blank editor window. I typed the line
cat("Hello world") on the first line of the editor window and saved the file
as hello.R in the directory /Users/jg/Desktop/notes/MathFin2019/codes.
Basic typing and editing in this code editor is similar to doing it in Word. You
may have to figure out the process of navigating the file system to get it to save
your file where you want it. Figure [3| shows what the editor window looks like
with that line and having been saved. The file name “hello.R” is on the top line
of the editor window (instead of “Untitled”).

ES NP WP () gy e— L L
O B E codes £ Q
| Name ~ Date Modified Size Kind
. hello.R Today, 5:27 PM 19 bytes Rez Source
. PV.R Yesterday, 6:15 PM 86 bytes Rez Source

Figure 1: A screen capture of the R files window, on an imac

[XOX) Untitled
1

Figure 2: A screen capture of a blank R text editor window

1 cat("Hello world")
2

Figure 3: A screen capture of a blank R text editor window

At this point, the file hello.R is an R script, which is a file containing a
sequence of R commands. This file has only one command, but we will soon
add more. To execute this command I have to get to the right directory. At
the command line, I type cat("Hello world") [enter]. The result is Hello
world as in the first handout. Next I execute the commands (just one command)
in the file hello.R by typing at the command line source("hello.R"). This
is the same command and it does the same thing.

To illustrate the value of scripts and editors over the simple command line, 1
modified hello.R to print three lines. The file is in Figure[dI could have typed
these three lines at the command window, but put them in the script instead.

1 cat("Hello world")
l cat("It is a beautiful wold")
cat("The sun is shining and the grass is growing")

Figure 4: The R script to type three lines

Alas, here’s what happened when I ran the script:

> source("hello.R")
Hello worldIt is a beautiful woldThe sun is shining and the grass is growing

It’s all on one line instead of three. Every script has bugs the first time,
including this one. That is fixed (I know but forgot) by adding \n to the end of
each line. This is carried over from the C programming language. The backslash
\ is the escape character. The n means new line. Together, \n says: go to the
next line now. The new file hello.R is in Figure[§] I made it from the old one
by typing \n in three places. I did not have to type everything over, which I
would have had to do using just the command line.

cat("Hello world\n")
cat("It is a beautiful wold\n")

o0 e -t hello.R

1

2

3 | cat("The sun is shining and the grass is growing\nr)
4

Figure 5: The R script to type three lines, with newline characters

Here’s what happens if you run the script now:

> source("hello.R")

Hello world

It is a beautiful wold

The sun is shining and the grass is growing
>

It’s almost perfect, but there is still one bug: “world” is “worl” on the second
line. I edit the hello.R file to fix this (one key stroke and a few mouse clicks —
remember to save) and it becomes

> source("hello.R")

Hello world

It is a beautiful world

The sun is shining and the grass is growing
>

If you type "Hello world" at the command line, it types "Hello world"
back to you. Why do we use the cat() function in a script? I don’t know

why, but without cat () the output that is typed at the command window goes
somewhere else — dunno where. I edited the hello.R script to add the line 2
[enter] at the end. At the command window, this would have given [1] 2,
but in the script it gives nothing. Try it yourself.

Arrays

Computers store and manipulate data. Arrays are a way to store and access
data. An array in R is an object with a name (the array name) that contains
many data values. In the simplest R array, you find a specific data value by
giving an integer, which is the value index. All the data values have the same
type. The allowed index values are 1,2,...,n, where n is the size of the array.
You get the second data value in an array by giving the array name and the
index value 2.
Here is an example, from the command line:

> letters = c("alpha", "beta", "gamma", "delta")
> cat(letters)

alpha beta gamma delta

> letter = letters[2]

> cat(letter)

beta

>

The first command is an assignment statement that creates an object letters,
which is an array. The R function c¢() (which also stands for “concatenate”,
sorry) returns an array from its arguments. The arguments are the strings
"alpha", etc. The second command uses cat() to print the contents of the
object letters. The four data values are there. The next command indezes
into the array. The array index is the number in square brackets, 2. Altogether,
letters[2] says: return the second data value in the array letters. It creates
(or repurposes) an object called letter and assigns it that data value. The
next command, cat(letter) [enter], shows that the second data value was
beta.

The array letters was created from a list of its data values. There are
other ways to create an array. One is by reading the data from a data file or
from a data set on the web. There will be a class assignment that does this. We
will get stock price data from Yahoo finance and use this for quantitative asset
allocation. Another is by allocating the space for the array (we will see what this
means) and using R commands to create the values of the data values. Many
mathematical calculations in R create arrays in this way. Here is an example at
the command line

> numbers = 3:9
> numbers[1]

[1] 3

> numbers [4]

[1] 6
> numbers
[11 3456789

The expression a:b in R means: the array with all the integers starting at a
and ending at b. Therefore, 3:9 should be an array with the numbers starting
at 3 and ending with 9, which is the seven numbers 3,4,5,6,7,8,9. The object
numbers is created and assigned this array as its value. You can index into this
array as before. First data value is numbers[1], which is the first number in
the sequence, 3. The fourth value is 6. The last command numbers [enter]
returns the value of the object numbers itself, which is all the data values 3
through 9.

You can change a data value in an array by assigning it a new value. Here
is an example from the command line. The first command creates an array of
length 3 (the number of data values). The second command verifies that this
was done correctly. The third command, numbers[2] = 5 [enter], assigns the
second data value the value 5. The last command shows that numbers[2] has
changed from 7 to 5.

> numbers = 6:8
> numbers
[1] 6 7 8
> numbers([2] = 5
> numbers
(1] 6 5 8

All the data values in an array have the same type. The letters array
has data of type character string. The numbers array has data of type double
(double precision floating point). Here is an experiment from the command
line showing what happens if you mess with this. The first command uses the
R function typeof (), which is supposed to tell you the type of its argument.
That’s what the documentation says. But if its argument is an array, it tells
you the type of the data values instead. It does not tell you that the argument
is an array. The data values in numbers have type double. So, what hap-
pens if you try to one of these data values to a character string (the command
numbers[2]="beta" [enter])? It turns out that R converts all the data values
to string. The remaining numbers 6 and 8 are converted to the one character
strings "6" and "8".

> typeof (numbers)

[1] "double"

> numbers[2]="beta"

> numbers

[1] l|6|l Ilbetall ||8|l

There are at least two lessons to learn from this experiment. One is that you
should experiment at the command line or with simple scripts to see for yourself
what R does in certain situations. The other is that data values can change

unexpectedly and in ways that can be hard to notice at first. We didn’t mean
to change the data value numbers[1]. When you print the value numbers[1],
you might not notice that its value has changed from 6 (type double) to "6"
(a character string). But if you try to add 1 + 6 using numbers[1] for the 6,
you get an error message. The binary operator is +. This operator needs
two arguments that are numbers. There is no way (in R to add a number to a
character string.

> 1 + numbers[1]
Error in 1 + numbers[1] : non-numeric argument to binary operator

Loops

A loop is a block of R commands (a code block) that is executed repeatedly. There
are different kinds of loop, the for loop illustrated here, and the while loop
and others. The for loop is controlled by the for([variable] in [array])
command at the beginning. The body of the loop is a sequence of commands
contained inside curlies. This is like the code block that defines the body of a
function, which is described in the first handout. There is an environment for
the commands inside the curlies that contains the object variable. The code
in the loop body is executed with the value of variable being each of the data
values in the array.

Figure [6] is a screen capture of an R editor window for editing the script
lettersLoop.R. The first few commands create and verify the letters array
as before. The \n on line 4 makes the output delta appear on the next line
after alpha. Otherwise it would be alphadelta. Line 9 is the control statement
for the for loop. It says that the loop body will be executed with the object
letter taking all the data values in the array letters. Lines 10 and 11, which
are enclosed in curlies, are the body of the loop. The loop body will be executed
four times, one time for each data value in the letters array.

[NON) lettersLoop.R
1 letters = c("alpha", "beta", "gamma", "delta")

i 2 letter = letters[1]
3 cat(letter)
4 cat("\n")
5 letter = letters[4]
6 cat(letter)
7 cat("\n")
4 8 cat("Here are some Greek letters\n")
g wv| for (letter in letters){
10 cat(letter)
11 cat(" is a Greek letter\n™)
12 A
Qs cat("There are more\n")

Figure 6: A screen capture of the script lettersLoop.R in an window

Note that the commands in the loop body, lines 10 and 11, are indented by
four spaces. This makes the code easier to read by making it visually obvious
which commands are in the loop body and which are not. The closing curlie
could be at the end of the command at line 11, but many coders prefer to
put it on its own line, but indented less than four spaces. Things like this
are part of programming style. You write code so that people (you or others)
can easily figure out what it does. Variable names are also part of programming
style. The array letters could have been called thingl. The control statement
could have been: for (thing2 in thingl){. It would take longer for the
person reading the code to figure out that thingl is a list of letters, and that
thing?2 is one of those letters. White space is another part of programming style.
This refers to blanks, or blank lines, that help the important things stand out. I
used (letter in letters), with blanks before letter and after letters to
make them stand out from the parens. Coders argue about programming style.
You can find style guides for R on the web. All good coders have a specific
programming style that they stick to. In this class, you will be asked to print
and hand in your code. You will lose points if your code has bad style and is
hard to read.

Here’s what happens when you run this script from the command line. The
body of the loop has been executed four times, first with letter having the
value "alpha", and then "beta", and so on.

> source("lettersLoop.R")
alpha

delta

Here are some Greek letters
alpha is a Greek letter
beta is a Greek letter
gamma is a Greek letter
delta is a Greek letter
There are more

>

Figure [7] illustrates a function that does its job using a for loop. Lines 1
and 3 are blank lines, which is a form of white space intended to highlight line 2.
Blank lines are ignored. Line 2 is a comment. The # character at the beginning
of the line tells the R interpreter to ignore everything that comes after. This
makes the interpreter see line 2 also as blank. The comment contains a message
to the person reading the code saying what it does. You are required to put
comments like this in front of every R function that you write. You will be
graded on the clarity of your comments as well as the correctness and clarity of
the code itself. After the first three lines of programming style, line 4 defines an
object ssq as a function of an argument that will be called n in the environment
of the function. The function computes the sum of squares ssq = 1+4+---+n?2.
In statistics, a sum of squares is called “ssq”. Line 4 defines an object sum and
assigns it the value 0. We say that the variable sum is defined (created as an
object), and initialized (given its starting value) to 0. Line 6 is the control

statement. Inside the body of the loop, the object i will get all the values in
the array 1:n. In that way, i will have the values 1, then 2, and so on up to n.
Lines 7 and 8 are the body of the loop. Line 7 computes the square of i. The
name isq stands for “; squared”. Line 8 accumulates the sum in the variable
(object) sum. It adds the latest square to the sum of all squares before it.

In the first ¢rip through the loop i has the value 1 and sum gets the value 1.
In the second trip through the loop, i has the value 2 and sum gets the value
144 = 5. The old value 1 is replaced with the new value 5. This continues
until it has added the squares of all the numbers in the array 1:n.

u

O [] .r] ssq.R
-
2 # a function to compute the sum of squares 1A2 + 2A2 = ... + nA2
3

? 4 v ssq = function(n){

£ s sum = @

| s¥ for (1 in 1:n){

£ 7 isq = i*i

! 8 sum = sum + isq

Pos
10 returnCsum)
11 Al Y

Figure 7: A screen capture of the function ssq.R in the editor window

Here is one way to use the function ssq from the command line. First you
have to put it into the environment by executing the script ssq.R. Once ssq()
is in the environment, you can use it as you use any R function. The first value
is supposed to be 12+22 +32 = 1 +4+9 = 14. 1 did that as a check that it was
coded correctly. The last command is something you might want a computer
for. If you wanted to know 1 + 4 + --- 4 1002, it would be quicker to use R in
this way than to add the numbers by hand. (This supposed you don’t know the
formula.)

> source("ssq.R")
> ssq(3)

[1] 14

> ss8q(100)

[1] 338350

