Mathematics of Finance, Courant Institute, Spring 2019 https://www.math.nyu.edu/faculty/goodman/teaching/MathFin2019/MathFinance.html Always check the class message board before doing any work on the assignment.

Assignment 6, due April 11

Corrections: (April 8, many correction)

1. True/False.

- (a) If A and B are $n \times n$ symmetric matrices, then AB is a symmetric matrix. (Hint: see exercise 2.)
- (b) If (X, Y) is a two dimensional random variable with probability density p_{XY}(x, y), and if cov(X, Y) = 0, then X and Y are independent. (Hint: Suppose (X, Y) is uniformly distributed in the unit disk x² + y² ≤ 1. If X > .9 then Y < .9 (why?).)</p>
- (c) If C is an $n \times n$ matrix with $c_{ij} > 0$ for all i, j, then $w^t C w \ge 0$ for any n component vector w.
- (d) IF C is an $n \times n$ matrix with $c_{ij} = cov(X_i, X_j)$ for some correlated random variables X_1, \ldots, X_n , then $w^t C w \ge 0$ for any n component vector w.
- 2. Verify that matrix multiplication is associative in this example.

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad , \quad v = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$$

Calculate the vector and matrix

$$b = Av$$
, $M = vv^t$.

Show that associativity is true for Avv^t by verifying (using arithmetic) that $bv^t = AM$, which is:

$$Avv^{t} = [Av]v^{t} = A[vv^{t}] = \begin{pmatrix} 56 & 70\\ 128 & 160 \end{pmatrix}$$

- 3. Suppose $f(x, y) = x^2 + y^2$ and g(x, y) = 3x + 4y.
 - (a) Suppose $x_0 = 1$, and $y_0 = 1$. We want to choose Δx and Δy so that $\Delta f = -.1$ and $\Delta g = .2$. Do this using first derivative approximations to estimate Δf (in terms of

$$abla f = \operatorname{grad}(f) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \ .$$

and ∇g . The answer will not be exact. Using the gradients, you can write Δf and Δg in terms of Δx and Δy . You get two linear equations, which you can solve for Δx and Δy .

(b) Use the method of Lagrange multipliers to find

max g(x, y) subject to the constraint f(x, y) = 1.

(Find the optimal point and the optimal value of g.) Make a drawing of the x-y plane that illustrates the "surface" (curve in 2D) f(x, y) =1 and the "surfaces" g(x, y) = C for various C values. Show, in the drawing, that ∇f is proportional to ∇g at the optimal point.

(c) Use the method of Lagrange multipliers to solve the constrained optimization problem

 $\min f(x, y)$ subject to the constraint g(x, y) = 5.

Show that this is the same point as part (b). In this case, like in mean/variance analysis, maximizing g with a constraint on f is equivalent to minimizing f with a constraint on g.

4. (The Sherman Morrison formula) Suppose A is a symmetric $n \times n$ matrix and $B = A + vv^t$, where v is some n component column vector. Show that

$$B^{-1} = A^{-1} - cA^{-1}vv^t A^{-1}$$

Find a formula for number c. Hint: Find c to make this work:

$$B(A^{-1} - cA^{-1}vv^{t}A^{-1}) = (A + vv^{t})(A^{-1} - cA^{-1}vv^{t}A^{-1}) = I.$$

The calculation uses $A^{-1}A = I$ and $AA^{-1} = I$ and the fact that matrix multiplication is associative (exercise (3)). The expression $v^t A^{-1}v$ is a 1×1 matrix, which means it is an ordinary number. The expression for c might involve dividing by zero, in which case B is not invertible. Otherwise, B is invertible.

5. The one factor market model of Markowitz is that the value of asset X_j is

$$X_j = \mu_j + \sigma_j Z_j + \beta_j Z_0 , \quad j = 1, \dots, n .$$

The numbers Z_0 and Z_j are independent and random with mean zero and variance $\operatorname{var}(Z_j) = \operatorname{var}(Z_0) = 1$. The Z_j for $j \ge 1$ are *idiosyncratic factors*, which means factors that apply only to X_j . The remaining random variable Z_0 is the *market factor*, which is the same for each X_j . The number β_j is the market loading in X_j . An asset X_j is beta neutral if $\beta_j = 0$.

(a) Show that the covariance matrix of X has the form

$$C = D + \beta \beta^t$$

where D is a diagonal matrix and β consists of the market factor loadings β_i .

(b) Find a formula for C^{-1} . Show that C is invertible. Assume that $\sigma_j > 0$ for j = 1, ..., n. Hint: use the Sherman Morrison formula. The inverse of a diagonal matrix is diagonal.

Computing exercise.

Write an R script that verifies the Sherman Morrison formula problem (4) in some specific cases. Suppose A is an $n \times n$ matrix with entries $a_{ii} = 2$, and $a_{i,i+1} = a_{i+1,i} = 1$ and $a_{ij} = 0$ otherwise. Suppose v is an n component column vector such as $v_i = 1$ for all i or $v_i = 1/i$. Calculate A^{-1} using the solve() function in R. Use this and the Sherman Morrison formula to calculate $(A + vv^t)^{-1}$. Suppose M is the answer from the Sherman Morrison formula. Calculate $M(A + vv^t)$ to see whether M is actually the inverse. Try a few sizes n ranging from small to very large. When n is very large, you need a single number to say whether $B = M(A^vv^t)$ is close to the identity matrix. One possibility is

$$R^2 = \sum_{i,j} \left(b_{ij} - \delta_{ij} \right)^2$$

Here δ_{ij} are the entries in the identity matrix. You should notice that the script takes a while to run when n is large, and that R^2 gets larger (though not actually large). Hand in a printout of your script and some sample output.