
Mathematics of Finance, Courant Institute, Spring 2019

https://www.math.nyu.edu/faculty/goodman/teaching/MathFin2019/MathFinance.html

Always check the class message board before doing any work on the assignment.

Assignment 4, due March 14

Corrections: (March 8: Black Scholes formula included (page 5), March 13,
Problem 2 formulas corrected to be M ′(0) instead of M ′(λ), etc.)

1. True/False. In each case, state whether the statement is true or false
and explain your answer in a few words or sentences

(a) Vanilla puts and calls are publicly traded on exchanges and have
market prices.

(b) The CRR or Black Scholes theoretical option price is a function of
market parameters (volatility), not just market prices.

(c) The theoretical (CRR or Black Scholes) price of a put or call option
does not depend on whether the underlier pays a dividend.

(d) If the risk free rate is not constant in time, then the theoretical price
of a European option that expires at time T depends on ZT (the
price today of a zero coupon bond that matures at time T).

Review of probability

2. Suppose that X is a random variable with probability density p(x). The
moment generating function function is

M(λ) = E
[
eλX

]
=

∫ ∞
−∞

eλxp(x) dx .

Assume that the integral defining M(λ) converges for all λ. Show that

M(0) = 1 , M ′(0) = E[X] , M ′′(0) = E
[
X2
]
, etc. (1)

(The expected values of powers ofX are called moments (don’t know why).
The expected value of the exponential “generates” the moments through
differentiation.) Don’t worry about the mathematical rigor unless you feel
like it.

3. Suppose X is uniformly distributed in [−1, 1]. What is the probability
density of X? Find M(λ) for this density (calculate the integral). Check
that the formulas (1) are satisfied up to the second moment (which is
E
[
X2
]
).

4. Suppose that X is a Gaussian random variable with mean µ and variance
σ2. The probability density of X is

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

1

https://www.math.nyu.edu/faculty/goodman/teaching/MathFin2019/MathFinance.html

You may use the formula ∫ ∞
−∞

e−
z2

2 dz =
√

2π .

Calculate the moment generating function. (Hint: use a linear change
of variables x = az + b or z = ax + b, whichever is more convenient, so

the integral becomes C
∫∞
−∞ e−

z2

2 dz.) Verify the formulas (1) up to the
second moment.

5. We say that a random variable S is lognormal if X = log(S) is normal.
In particular, S is lognormal with parameters µ and σ if X = log(S) is
normal with mean µ and variance σ2. It is possible to write a formula
for the probability density p(s), but that is not the easiest way to answer
questions about the lognormal.

(a) Find formulas for the mean and variance of S in terms of the param-
eters µ and σ. (Hint: S = eX . Use the Gaussian moment generating
function.)

(b) For what values of λ is the moment generating function defined?

6. The cumulative normal, or the cumulative normal distribution function, is

N(a) = Pr(Z < a) =

∫ a

−∞
e−

z2

2 dz .

In this formula Z is a standard normal random variable, which means
Gaussian (normal) with mean 0 (standard) and variance 1 (standard).

(a) Suppose X is Gaussian with mean µ and variance σ2. Find a formula
for Pr(X < a) in terms of µ, σ, a and the cumulative normal. Explain
the statement that Pr(X < a) depends on the number of standard
deviations X is from the mean.

(b) Suppose S is lognormal. Suppose K > 0. Recall the notation (S −
K)+ for the positive part of S −K. This is S −K if S > K and zero
if S < K. Find a formula for E[(S−K)+] if S has parameters µ and
σ. This is the Black Scholes formula for pricing a European style call
option.

Computing problem. This exercise asks you to build software that finds
theoretical option prices for European or American style puts. This code will
require several functions, defined in different script files, to work together. It
is the first experience in this class of software engineering. You “build” (code)
the pieces separately and then assemble them. You test each piece separately.
Any ten lines of code, as first written, is likely to have a bug. Make that five
lines if there is math – formulas and such – or complicated array indexing. This
software involves both. For each step below, print the testing code (probably
just a few lines) and some output showing that the function being tested works.

2

Step 1, write a function that evaluates the intrinsic value of the put option.
This takes argument S (the price of the underlier) and K (the strike price) and
returns (K −S)+. Write an R script that calls this function (uses it in a com-
mand) to evaluate the intrinsic value at many points (maybe 100 or 1000?) in a
reasonable range around K and makes a plot. The handout Plotting explains
how to do this. Put the parameter K in the title of the plot.

Step 2, write a function that evaluates the Black Scholes formula for the the-
oretical price of the same put. You can get the formula from the book or from
online web sources. If you use the book, you will have to use put-call parity since
only the call formula is given. Put this plot in the same graph with the intrinsic
value so you can see the difference. Take volatility σ = .4 (40%/year), r = .02,
and T = .25 (a three month option) or T = .5 (a six month option). Make some
plots with various values of T and r. Describe how the Black Scholes put value
depends on T and r. Put the parameters T , r, σ, and K in the title or subtitle.
Make the legend explain which curve is which. Automation is key. It will take
time to get the code to work. But once it works, it will be very easy to play with.

Step 3, build a function that does one time step of the binomial tree for a
European style option. This function calculates the numbers Vjk, which are
the prices at time tk, from the numbers Vj,k+1, which are the prices at time
tk+1 = tk + ∆t. This function does a for loop over j with k fixed. It takes
arguments V n (the “next” V array, which represents the numbers Vj,k+1), and
q u (representing the risk neutral probability of S → uS), and the one-step
discount factor D = e−r∆t. The first command in your function can be M =

length(V n). The R function length() returns the length of its argument. If
V n is a array of length M , then length(V n) will return the number M . The
output is an array V of length M − 1 that holds the numbers Vjk. These are
calculated using the formula

Vj = D (quVnext,j+1 + qdVnext,j) , j = 1, . . . ,M − 1 . (2)

Your function should create the array V before applying the formula (2), for ex-
ample, using V = 1:(M-1). (Parens are important here. If you type V - 1:M-1,
you will get 0, 1, ..., M-1, which is 1, 2, ..., M with 1 subtracted from
each number. If you type for (j in 1:M-1), a similar bad thing will hap-
pen. You must type for (j in 1:(M-1)).) Test your function by writing a
script that calls it once with Vnext having length 5 (say, but not hardwired) and
all zeros except a single 1 somewhere in the middle. Invent a qu = .4 (say, not
hardwired) and print the numbers Vj to check that they are correct (all zero
except one equal to qu and another equal to qd = 1− qu).

Step 4, build function that evaluates V (S0, T) for a European put using a full
CRR binomial tree. This function should take as argument S0, K, T , r, σ, and
n (the number of time steps). First it should compute ∆t, and u and d and qu
using formulas from class. Then it should evaluate the final time stock prices

3

Sn,j = S0u
j−1dn−j+1 in order to evaluate the numbers Vn,j , which is the cash

flow generated at time T from S = Sn,j . Use the function that evaluates the
intrinsic value (from step 1). Then (this is the part that may take computer
time) it should call the function from step 3 n times to evaluate the CRR option
value today for price S0. This should be the return value for the function. Write
a script to test this function by seeing that the return value converges to the
Black Scholes value as n→∞. The script should apply the formula with fixed
parameters except that it should use an increasing sequence of n values (you
choose the sequence). For each evaluation it should print a nicely formatted
line with the CRR and Black Scholes values, their difference, and n.

Step 5, do it for an American style put. Modify your time step function from
step 3 to take the max with the intrinsic value (a function you wrote in step
1). This should change only two lines of code. One is the one that evaluates
the max. The other is the one source("...") that tells the time step function
about the intrinsic value function. Make a plot of the intrinsic value and the
American option value together. This requires you to modify the function from
step 2, replacing a call to the Black Scholes function with a call to the American
put pricer. You should see that the curves are the same below the early exercise
point and that the American option value is higher when S0 is larger than the
early exercise point. If you take a large n (for accurate value) and a lot of plot
points, you should be able to observe the smooth pasting condition, that the
derivative of the American style option price is continuous at the early exercise
value.

Conclusion: This sequence of steps takes you from a beginner level coder to
an intermediate level coder. You have to assemble pieces, test them separately,
and put them together to form a larger piece of software. When the pieces work
separately, you should be pleased to see that they work together.

Black Scholes formula for the European option on an underlier that
does not pay dividends.

s = the spot price today

K = the strike price

T = time remaining until the option expires

r = the risk free rate

σ = the volatility

4

V (s,K, T, r, σ) = Ke−rTN(−d2)− sN(−d1)

d1 =
log(s/K) +

(
r + σ2

2

)
σ
√
T

d2 =
log(s/K) +

(
r − σ2

2

)
σ
√
T

= d1 − σ
√
T .

5

