Assignment 1, due February 5

Corrections: (none yet)

1. From An Introduction to Quantitative Finance, exercise 1 on page 9.
2. Consider a forward contract on the S\&P500 index. The contract date is 6 months from today. The risk free interest rate is $2.5 \% /$ year. The spot price of the index today is 2000 . Find F, the forward price.
3. (practice with calculus) Consider an annuity that pays C per year with m payments per year for T years. Then each payment would have size $\frac{1}{m} C$. Let t_{j} be the time (date) of payment j. Suppose (for simplicity and without loss of generality) that the present time is $t=0$. The continuous time interest rate is r. The present value of the payment at time t_{j} is $e^{-r t_{j}} \frac{1}{m} C$.
(a) Write a formula for the total present value of the annuity, of the form

$$
V_{m}=\sum_{j=1}^{n} * * *
$$

The number of payments in total is

$$
n=m T=(\text { payments per year }) \times(\text { number of years }) .
$$

(b) Write an explicit formula for V_{m}. Hint: The sum from part (a) is a geometric series, once you take out the common factor. It helps to write a formula for t_{j} in terms of j and m. The geometric series formula is $S(z)=z+z^{2}+\cdots+z^{n}=\left(z-z^{n+1}\right) /(1-z)$.
(c) (review) Consider an integral

$$
A=\int_{0}^{T} f(t) d t
$$

Let the interval $[0, T]$ be divided into n equal sized small pieces of length Δt. Define $t_{j}=j \Delta t$, and let that be the right endpoint of the interval $I_{j}=\left[t_{j-1}, t_{j}\right]$. The Riemann sum approximation to the integral is

$$
A_{n}=\Delta t \sum_{j=1}^{n} f\left(t_{j}\right)
$$

Draw a picture to illustrate A_{n} as an area that is close to the area that defines A when n is large. This is the usual definition of the integral from calculus (except possibly for using the right endpoint instead of the left endpoint) and you probably saw the picture in a calculus book.
(d) Show that the sum from part (a) is a Riemann sum approximation to an integral:

$$
V=C \int_{0}^{T} e^{-r t} d t
$$

Find a formula for Δt in terms of m and find a formula for n in terms of m and T.
(e) Calculate the integral from part (d) to get a simple formula for V. The formula is simpler than the formula for V_{m}, but it should be clear that V_{m} converges to V as $m \rightarrow \infty$.
(f) (yield to maturity). Consider a financial instrument with a price P and a present value V. The present value depends on r, and is the sum of the the present values of all the payments. The instrument could be a zero coupon bond with just one payment, an annuity, a coupon bond (coupon payments and a principal payment), or something more complex. The price is determined by the market (what you can buy or sell the instrument for), but the present value is a theoretical number that is a function of r. The effective yield to maturity is the value of r so that $V(r)=P$. You could call it the interest rate implid by P.
Consider a ten year annuity $(T=10)$ with $C=\$ 10,000=\$ 10^{4}$. Find the price P that makes the yield to maturity $r=5 \% /$ year if
i. $\quad m=1$ (annual payments)
ii. $\quad m=4$ (quarterly payments)
iii. $\quad m=12$ (monthly payments)
iv. $\quad m=\infty$ (theoretical continuous payment).

Comment on the accuracy of the simple $m=\infty$ approximation when m is not infinite. See Problem (3) before doing this.
(g) From now on, use only the $m=\infty$ formula for the present value $V(r)$. Draw a sketch of the function $V(r)$ for $r \geq 0$. Use the graph to show that there is exactly one r_{*} (effective yield) so that $V\left(r_{*}\right)=P$ as long as P is not more than the un-discounted value $V_{0}=C T$ (the sum of the payments without discounting). The sketch should show what happens as $r \rightarrow 0$ and as $r \rightarrow \infty$.
(h) The equation $V(r)=P$, which you would solve to get the yield to maturity, is transcendental and has no solution formula. We are going to find an approximate formula for r_{*} under the hypothesis that $r T$ is small. Note that for a ten year annuity with $r=5 \%$, we have
$r T=.5$. It's not clear at the start whether this is small enough for the approximation to be accurate.
Use Taylor expansion (of the function e^{x} or the function $V(r)$) to find the expansion to second order

$$
V(r) \approx \widehat{V}(r)=a_{0}+a_{1} r T+a_{2} r^{2} T^{2}
$$

Replace the exact yield-t-maturity equation with the approximate one $P=\widehat{V}(r)$ and solve. The result should be

$$
r=\frac{2}{T}\left(1-\frac{P}{T C}\right) .
$$

(i) Use the approximate formula from part (h) to estimate the yield to maturity of a ten year annuity that pays $\$ 10,000 /$ year and costs $\$ 80,000$. Note that this is less than the "full value" $V_{0}=C T=$ $\$ 100,000$.
(j) Use the actual formula $V(r)$ to find the actual present value of the annuity with this r. How close to the target $\$ 80,000$?
4. (introduction to R) Read the posted document StartingWithR.pdf from the Resources page of the public class web site. Follow instructions to install the R app on your computer. Spend a few hours playing with R along the lines of the document, but not exactly, to test your understanding. When you are ready, either close and re-open the R app or give the command rm(list=ls()) [enter]. This command removes everything from the environment so nothing from your earlier R session will accidentally effect what you're about to do.

Work at the command line (without scripting or editors) for this exercise. Define an R function $p v(r)$ that calculates the formula from Problem (1f) and answers the questions there. It should take m, C, and T from the environment. You will have to use a large m value to simulate $m=\infty$. Experiment to see what m is needed. If you can, make a screen capture of your R app with the part relevant to Problem (1f). Print the image and hand it in with the assignment.

