Derivative Securities, Courant Institute, Fall 2008
http://www.math.nyu.edu/faculty /goodman/teaching/DerivSec08/index.html
Jonathan Goodman and Keith Lewis

Supplementary notes and comments, Section 8

1 Dynamics, initial values, final values

Suppose f(t) represents the state of a system at time ¢. By dymanics, we mean
relations between values of f(t for different values of ¢. In the best case, knowing
f(0) would determine f(t) for all other ¢. A special case is to determine the
values of f(t) for ¢t > 0 from the given f(0). This is the initial value problem. A
slightly more general form of the initial value problem is to give f(7') for some
specific T and ask for values f(t) for ¢ > T. Below, well call this marching
forward in time. The final value problem is specifying f(T') and seeking the
values f(t) for ¢ < T. This corresponds to marching backward in time.

We sill see that ordinary differential equations can “march” in either direc-
tion. But partial differential equations often have the ability to march only in
one direction, not both. This little supplement is supposed to provide intuition,
if not a mathematical foundation, for this situation.

Differential equations are a common way to express dynamics. For example,
suppose that it takes a single number to specify the state of the system, which
is to say that f(t) € R, or that f(t) at any given ¢ is just a number. Suppose
we know that this number satisfies the differential equation

of = —-rf. (1)
Then f(0) determines f(t) through the formula
ft) = f0)e . (2)

This formula holds for ¢ > 0 or ¢ < 0 — the ODE (1) can march either forward
or backward. If we give the extra condition

f0) = a, (3)

then we get f(t) = ae™"t.

There are several ways to view the process of deriving (2) from (1). One
may be familiar from a class in ordinary differential equations. We multiply
both sides by dt and divide by f to get

i = —rdt,

f

then we integrate both sides:
In(f(t)) = —rt + C,

then we get f(t) = Ce™". Finally, the initial condition (3) determines C = a,
and then
7t) = ae. ()

A less satisfying (at first) approach is simply to check that the formula (2)
satisfies the ODE (Ordinary Differential Equation) (1) and has the correct value
(3). That is, simply check that the given function (4) satisfies the requirements
we put on it.

The second approach (and also the first, if you think about it) relies on
uniqueness of solutions of the initial value problem or the final value problem.
Uniqueness means that there is only one function f(¢) that satisfies both the
ODE (1) and the condition (3) is specified. Because of uniqueness, if you find
a function that satisfies the ODE and the initial or final condition, then you
have found what you were looking for. The uniqueness would be false (for a
set of specifications) if those specifications did not determine f completely. For
example, if you just give the ODE (1) but not the initial condition (3), then
both f(t) = e " and f(t) = 2¢~"" are candidates.

The other main theorem in the general theory of ordinary differential equa-
tions is ewistence, that there is a solution. With just the right number of speci-
fications we have both existence and uniqueness. If we give too few conditions,
we may have existence but not uniqueness, as in the example above. If we give
too many conditions, we may have uniqueness but not existence. For example,
if we seek a function that satisfies (1) together with the two conditions f(0) = 1
and f(1) = 0, then there is no solution at all. The problem is overdetermined
and existence fails. If by some accident there were a solution, (say, we asked for
f(0) =0 and f(1) = 0), that solution would be unique.

In applications (finance and elsewhere), we use differential equations to find
functions. For that, we want to know what combinations of differential equations
and initial or final conditions determine the desired function completely. In
practice, the actual f often is found by the computer. But before going to the
computer, the practitioner should know that the problem makes sense.

For partial differential equations there is the more subtle point that the
initial value problem or final value problem needs to be well posed. The precise
definition of this is out of place here, but it boils down to the requirement that
the solution should exist for generic initial conditions (or final conditions for the
final value problem). The initial value problem is ill posed if there are solutions
for some initial conditions, such as those given by specific formulas, but the
same initial value problem with generic initial values does not have a solution®.

1This is equivalent to the usual definition involving continuous dependence on the initial
conditions by the closed graph theorem of functional analysis, as was pointed out by the Polish
mathematician Banach.

2 Time stepping and existence

Marching, also called time stepping, provides important intuition as well as a
mechanism for proving existence (and, if you think harder than we have time
to do here, uniqueness). This means generating a sequence of approximate
solutions that depend on a parameter 6t and giving the solution as the dt — 0
limit. We use the usual notation ¢, = kdt.

For the initial value problem, we march forward in time. If we have Fj(0t) ~
f(tr), we get Fipp1 = f(tr+1) using the differential equation:

df f(tev1) — f(t) Fry1 — F
—_— = — ~ = —rkF]
7 rf = 5 rf(ty) = 50 rFy
which ultimately becomes

Fk+1 = Fk — TFk(St . (5)

To construct an approximate solution to the initial value problem, we start with
Fy = a, and then us (5) to compute the numbers Fj, for k > 0. If §t is very
small, these numbers should be very close to the exact numbers f(t).

This marching process is part of a mathematical proof of the existence the-
orem. Even if we do not know that there is a function f(t) that satisfies the
ODE and the initial condition, we can attempt to use the definition

f@) = Mﬁlé)rrtlk:t Fy . (6)
The mathematics comes in showing first that the limit exists. Once we know
that the limit exists, we must show that this f satisfies the differential equation.

The hardest part is showing that the limit exists, as we will see below. The
marching method (5) is a finite difference approximation to the ODE (1). If
nature created a solution to the ODE, then the marching scheme has a good
chance to find it. If nature did not create a solution to the ODE, then something
should go wrong with the marching method. What goes wrong (in most cases)
is that teh limit (6) does not exist because the numbers F go to infinity (blow
up) as 0t — 0 with ¢, = ¢ fixed.

The ODE (1) also allows us to march backwards in time if we want to find
approximate solutions to the final value problem. A simple way to do this would
be

Fi, = Fyn +’I‘Fk+1(5t .

3 Expected values

We often use expressions for solutions in terms of expectations of things. This
is a different way to define a function of time, so it gives a different possible way
to construct a solution of the initial value problem or the final value problem.
For example, suppose we have the OU process

dX(t) = —rXdt + odW . (7)

Suppose we take X (0) = a and define
f(t) = E[X() . (3)
We can show that this f(¢) satisfies the ODE (1) by calculating
df = dE[X(t)] = E[dX(t)] = E[-rX@{)dt+ocdW] = —rE[X(t)]dt = —rf(t)dt.

It also is clear that f(0) = a because X (0) = a is not random.
But the solution of the initial value problem is unique and we know what it
is (4). This shows that
E[X(t)] = ae”™™".

We can do this without the explicit solution to (7) given in Kohn’s notes.

4 The backward equation
If X (t) satisfies the SDE
dX = a(X,t)dt + b(X,t)dW , (9)
then the expected values
flz,t) = By [V(X(T))] , (10)

(recall that E-;, means that the expected value is taken under the condition
that X (¢t) = z) satisfy

O f + %b(m,t)%ﬁf + a(z,t)0.f = 0. (11)
The function f(z,t) defined by (10) obviously satisfies the equation
f@,T) = V(z). (12)
A slight generalization is that the function,
fla,t) = r 7T B VX(T))] (13)
satisfies the backward equation
O f + %b(x,tﬁ@if + a(z,t)0,f — rf = 0. (14)

The existence theorem states? that there is a solution to the PDE (11) defined
for all ¢ < T that also satisfies the final conditions (12). In our case, this theorem
may not be strictly necessary, given that we already have a solution given by the
formula (10). The uniqueness theorem states that there is the function f(x,t)

2Disclaimer: there are technical hypotheses to this theorem. A good book on PDE (e.g by
Fritz John, or L. C. Evans) has the full story.

is completely determined by the condtions (11) and (12). This means that if
f(z,t) satisfies these conditions, it must be the same as the function defined by
(10).

These theorems are used in both directions. If we know that f(x,t) satisfies
(11) or (14), than the foumulas (10) or (13) provide the solution. The SDE (9)
is found from the PDE by matching coefficients. This is how the Black Scholes
derivation goes. First we use the hedging argument to show that the option
price satisfies

5202
2
Then we argue that this is a backward equation of the form (14), so the solution
is given by

O f + O*f + rsOsf —rf = 0.

flsit) = e " TVEL [V(S(T)] -

where
dS = rSdt + oSdW . (15)

I repeat (maybe not for the last time) that this does not mean that the actual
stock price satisfies the SDE (15). In fact, we assumed that S(t) satisfies a
different process. The risk neutral process (15) is defined to make (14) work,
not to match the actual dynamics of S(t).

The other direction is to find a solution to the final value problem somehow
and use this to compute the expected value (10) or (13). This is illustrated
by the last part of Problem 3 of Homework 6. It is complicated to compute
the fourth moment of X (¢) directly from the solution formula, but it is easy
to find the solution of the PDE directly as a polynomial with time dependent
coefficients. Once you find the solution, it is the solution (uniqueness), so it is
the expected value (10).

These theorems also have implications for computing, that again go both
ways. The expected values (10) or (13) may be computed by numerical solution
of the PDE, as explained below. This is often preferable to a direct Monte Carlo
approach because the finite difference method has no statistical error. Monte
Carlo usually has large statistical errors, so that it takes a huge number of paths
to achieve even medium accuracy. The other way is that we may use Monte
Carlo to find the solution of the final value problems (11) or (14). This is done,
despite the inaccuracy of Monte Carlo methods, for higher dimensional models
where direct finite difference methods are impractical (the so called curse of
dimensionality). We do not discuss this further here.

5 The log variable

The Black Scholes PDE can be reformulated using the log variable transforma-
tion

x = log(s/K) = log(s) — log(K) . (16)
The —log(K) on the right has the effect that s = K corresponds to z = 0,
which is convenient but not essential. This transformation makes the numerical

solution of the Black Scholes equation easier and has some theoretical uses
(which will not appear in this class).
We rewrite the Black Scholes equation in the log variable using the chain

rule. First
o5 _of v _ 1

ds Oz Os ;~5xf.

Next) .)
S S S

For the second term on the right, we apply the first derivative formula above to
get

1
The whole result is 1
02 = — (021 —0uf) -

The Black Scholes operator is

Lpsf =

0282 0’2
o Oif +10sf —rf = S (03f = 0uf) + 10uf —1f,

so the Black Scholes equation is
o? o?
of + ?Q%f + (7“— 2) Of —rf = 0. (17)

In its original form, the coefficients of 9, f and 92 f were functions of s. In
the new form (17), the coefficients are independent of s or x. This makes the
numerical finite difference solution easier, as we will see below. It also makes
it possible to apply standard techniques from the theory of partial differential
equations, such as the Fourier transform and Green’s functions. We will not
pursue those applications in this class.

There is a related way to derive the new formulation (17) of the Black
Scholes equation. Suppose S(t) is the geometric Brownian motion process (15)
and X (t) =log(S(t)) —log(K). From the Ito calculus, we find

dX = (0,X)dS + %(afx) (dS)?
_ 1 _ 11 s
= 3 (rSdt +oSdW) 552 S2dt
0.2
dX = (r— 2) dt + odW . (18)

The backward equation for (18) is exactly (17). The extra term %2& fin (17)

corresponds to the Ito term involving (dS)Q. This kind of thing is discussed
much more in the stochastic calculus class.

6 Finite difference solution of the backward equa-
tion

The finite difference method is a way to construct an approximation to f(x,t)
by marching backwards in time from the final time T" towards the present ¢ = 0.
If 6t is a small time step, we go from f(z,T) to f(x,T — 6t) to f(x,T — 26t)
and so on back to ¢ = 0. The difference between a PDE such as (11) and an
ODE such as (1) is that at each ¢, the solution at time ¢ is whole function of x.
The computer cannot store the values f(x,t) for all ¢, so we must make more
approximations.

The finite difference approach is to store approximations to the values f(z;, tx),
where the grid points x; are uniformly spaced with grid spacing dxz. That is,
ty = kit and z; = jox. The approximate values are Fj, ~ f(z;,tx). The
finite difference marching method starts by using the final conditions to get
Fj, = V(z;) for all j, where t,, = T = ndt. It then computes all the numbers
F; n—1 using the finite difference formula below. This is one time step. The
general time step starts with the numbers Fj;, for all j and computes all num-
bers F};—1 for all j. This continues until the desired numbers F} o have been
computed. That is, we start with final values and take time steps backwards in
time until time ¢ = 0.

The finite difference formula that allows marching in time comes from finite
difference approximations to derivatives. We need three of these. For a function
9(y), we have

i) ~ gy +dy) — g(y)

~ 5 , (19)
6y) — -9
7)) ~ g(y + y)%yg(y y) 7 (20)
and 5y) — 2 5
In particular, we use
0 f () ~ f(x,t)—gt(x,t—ét) ’ (22)
oop(en) ~ LRIt (23)
and
o f(at) ~ f(z+ 0z, t) — 2f(z,t) + f(x — t, t) . (24)

ox2
These formulas allow us to approximate derivatives of f by finite differences of
the numbers Fj; using facts such as z; + 6z x;41. For example,

f@j te) = flogte—1) Fjg — Fig—
&t ot '

Ocf(xj th) =

The other two derivative approximations we use are

F; —F;_

and F 2F;, + F
892:f(.1‘j,tk ~ JrLk 5t]2k J=Lk .

There are two steps in deriving a finite difference approximation that can be
used for time marching. The first is to use the differential equation (17) to give
an algebraic formula relating different numbers Fj;. We do this by replacing
each of the derivatives in (17) by it’s finite difference approximation using the
ij:

—rFy, = 0.

(25)
The second step is to use this equation to find a formula for F} ,_; in terms of
values of F' at time t:

L[e R o Fipin = 2Fn + Fj 1k 4 (- o\ Fiern = Fivn
ot 2 52 2 20x

5t o2

Fj,kfl = ij + @7(

ot o2
Fiire = 2Fjn + Fj-10) + 55— (7“ - 2) (Fj+1k — Fj—1,k) — 0trFj .

This may be expresses as

Firo1 = aFj, + bFj, + cFjp_1, (26)
where
o? ot ot o2
o = 2%2*2&0(“2)7 27)
ot
_ 2
o? ot ot o?
_ o°ot ot o” 2
¢ 2 b2 25ac(r 2)’ (29)

The computational algorithm is to set Fj,, = V(x;) then take a series of time
steps that compute the numbers Fj ;_; from the numbers Fjj using (26). The
various choices made in (22), (23), and (24) make that possible. In particular,

if we had used

flz,t+6t) — f(z, 1)
at ’
it would have got instead of (25) a relation between Fj ;i1 and the numbers
Fi_1x, Fji, and Fjiq . This would not help us determine the time k& — 1
numbers from the time k& numbers with an explicit formula like (26). The
choices we made give approximations that are both true and useful for marching
backwards in time.

Ohf ~

There is an important stability constraint relating the time step 6t and the
space step dz. The constraint essentially is that the coefficient b should be non-
negative. The condition simplifies if we neglect the last term on the right of
(28). We do this because when dx is small, the fraction §t/6x? is much larger
than d¢. In this case, the condition b > 0 is

ot < 2L (30)

Conditions such as (30) were first introduced in a paper of 1928 by Richard
Courant, Kurt Friedrichs, and Hans Lewy. At the time they were at the mathe-
matics institute in Goéttingen, which was the most distinguished center of math-
ematics in Germany and possibly the world. Ten years later, all three had
been chased out of German and were in the United States. Courant founded
an Institute of Mathematical Sciences at New York University and hired Kurt
Friedrichs as one of its first faculty members. Hans Lewy joined the mathe-
matics department at Berkeley. In 1973, the Institute of Mathematical Sciences
at NYU was renamed, after its founded and long time Director, the Courant
Institute of Mathematical Sciences. The stability condition (30) is called the
CFL condition after the three authors. The ratio A\ = 026t/dz? is called the
CFL ratio or the Courant number. The stability condition is that the Courant
number should be less than (or equal to) one.

In practice, a good way to satisfy the CFL stability condition is to specify
6z and the CFL ratio A and have the program choose

5t = \ox?/a? . (31)

This is what the posted program for assignment 7 does. Of course, the compu-
tational work depends on the number of time steps, which depends on the size
of the time step. Smaller A means smaller §t, more time steps, and a longer
run time. The largest possible time step, A = 1, has certain computational
drawbacks that we do not go into here. The posted code has A = 1/2, which is
reasonable for the computational experiments we will do in assignment 7.

The formula (26) gives Fj ;—1 in terms of three neighboring values at time ¢;.
For this reason is sometimes is called the trinomial tree method. If you neglect
the rdt term in (28) and take the largest possible time step consistent with
stability in (31), which is A = 1, you get b = 0. Thus, the binomial tree method
is what the trinomial tree method becomes if you take the largest possible time
step allowed by stability.

The trinomial tree interpretation is made stronger if the stability condition
is satisfied and we neglect rdt in (28). In that case, for 6t small enough, a > 0,
b>0,and ¢ >0 and a+ b+ c=1. In other words, F}_; is an average of the
numbers Fj1 %, Fjr, and F;_1 ;. In the case b = 0, these are the binomial tree
coefficients ¢, and ¢4 from before. The difference is that there is no arbitrage
argument to derive the formulas (27), (28), and (29). Instead, the derivation
is purely mathematical. It starts with the Black Scholes PDE, derived the
way Black and Scholes did, then makes finite difference approximations. The

trinomial tree method is better in practice than the binomial tree method. In
the end, the binomial tree method is just a way of explaining derivatives pricing
to people who can’t or won’t or don’t have the time to figure out the Ito calculus
and stochastic differential equations.

There’s another similarity between this finite difference method and the
binomial tree method, contraction. Up to now we have ignored possible limits
on the spatial variable, j. It is not possible for j to go from —oo to oo in the
computer. There must be a lower and upper bound. Suppose these bounds are
Jmin(k) < J < jmax(k), and that we have computed values Fjj for all j values
in this range. The finite difference (trinomial tree) formula (26) allows us to
calculate values Fj 11 for jmin(k) +1 < j < jmax(k) —1, but not for Fj .) x—1
of Fj . (k),k—1 That is, jmin(k —1) = jmin(k) +1 and jmax(k —1) = jmax(k) — 1.
The number of active j values decreases by two each time step. This is also true
of the binomial tree method. If we want to take n time steps, we start with
2n + 1 values. each time step the number of values decreases by two, so that at
the end there is just one value left.

The code that is posted works as follows. The user specifies the following
parameters using #define statements at the top of the main program:

e The numbers z,,;,, and Z,,4,. The code is supposed to compute the
solution f(z,0) for « € [Tmin, Tmaz]-

e The space step dx desired. The code may not use the value specified. It
will use the largest possible dx smaller than the one you specified so that
nx, the number of gris points remaining at time ¢ = 0 is an integer. The
formula iS Tyaz — Tmin = (nx — 1)dz, because there are nax — 1 intervals
of length dx between left endpoint is Z.,iy,, the right endpoint, x,,qz-

e The parameters of the problem, o, and r. The code as posted is for the
heat equation, which is Jyu+ %agu = 0. You will have to modify it so that
you can specify ¢ and r, the strike price, K, and whether it’s a put or a
call, instead of D. You might also want to rename the solution variable f
instead of u to be consistent with the notation of these notes. That is not
necessary, but it might be helpful.

e The final time, 7.

e The CFL parameter, A. The code posted has A = 1/2. Which will work
for most of the assignment.

The code has two procedures, FinalValues, and TimeStep. See the header
file for the precise calling arguments and return values. FinalValues sets the
final values, basically Fj,, = V(x;) for j in the appropriate range (larger than
Tmins Tmaz, Se€ above). For options valuation, you will set these to the payouts
for a put or call. Remember to take into account the log change of variables,
so that, for a put, V(r) = (K —s(x)), = K(1—e"),. TimeStep takes as
arguments two arrays, called u01d and uNew (which you can make £01d and
fNew). It assumes u0ld has the values Fj;. It computes the values Fjj_1

10

and puts these into uNew. The calling program calles TimeStep n times but

alternating between TimeStep(u2, ul, ...) and TimeStep(ul, u2, ...).
The call TimeStep(u2, ul, ...) treats u2 as uNew and ul as u0ld. The
call TimeStep(ul, u2, ...) does the reverse. In this way, we use only two

one dimensional arrays rather than one two dimensional array to hold all the
numbers Fji. This cuts the storage requirement by a factor of n/2, which may
not be so important in the present application but matter a lot in larger scale
computation.

The code computes a time step in a way similar to the way it computes a
space step. Once it has determined dz, it uses the formula (31) to get a time
step. It then reduces dt a little more to insure that the number of time steps of
size 0t is an integer. One of the advantages of the trinomial tree method over
the binomial tree method is that with the trinomial tree, it is possible to adjust
the time step and the space step separately (within limits determined by the
stability condition). This is not possible with the binomial tree method.

7 American options

An American style option is an option that may be exercised at any time up
to the expiration time, T. For example, an American style put (an American
put) with strike price K may be exercised at any time ¢ < T' to trade one share
of stock with price S; for cash amount K. This terminology is not related to
geography. There are European style options for sale in America and American
style options in Europe. But many exchange traded stock options are American
style. It is clear that an American option value is at least as great as the
European style option with the same expiration and strike price, because the
American option gives the holder more rights than the European option does.
The price of an American option is an increasing function of the expiration time,
T, for the same reason.

It is curious to note that there is a kind of option part way between American
and European. These options have a set number of exercise dates, T;. The op-
tion may be exercised not at an arbitrary time, but at one of these determined
dates. Interest rate options, swaptions in particular, often have this feature.
Such options are called Bermudan, because Bermuda is between Europe and
America. Actually, Bermuda is closer to America than Europe (at least geo-
graphically). Pricing Bermudan options is more like pricing American options
than European. In particular, standard Monte Carlo methods that apply to
European options do not apply to Bermudans or Americans.

In the context of American options, we often call V(s) the intrinsic value
rather than the payout. Because the option may be exercised at any moment,
the price of the option may never fall below the intrinsic value (which would be
an arbitrage of the simplest kind).

The holder of an American style option is faced with an optimal execution
problem. If she holds an option at time ¢, she must decide at time ¢ whether
to exercise the option or hold it (not exercise). This decision is made on the

11

basis of the known price S(t), and possibly on known prices S(t'), for t' < t.
It may not depend on future prices S(t'), for ¢’ > ¢. For simple puts and calls,
it seems clear that the optimal strategy involves a decision boundary, b(t). For
S(t) on one side of b(t), you hold the option. On the other side you exercise.
For example, for a put, you exercise if S(¢) < b(t) and hold if S(t) > b(¢).
This makes intuitive sense. A put becomes more valuable as the stock price
decreases. If you exercise early for that value when S(t) = b(¢), you probably
exercise early also for the greater value when S(t) < b(t). For a put, the hold
region is S(t) > b(t) and the early exercise region is S(t) < b(t). It is the reverse
for a call.

The difficulty is valuing an American style option is that the early exercise
strategy must be computed at the same time as the price. The price depends on
the early exercise strategy, and conversely. In the early exercise region, clearly
the price is equal to the intrinsic value. For a put, that is f(s,t) = V(s) for s <
b(t). In the hold region, the hedging argument shows (think this though) that
the price satisfies the Black Scholes PDE. We have seen (both computationally
and theoretically in Assignment 5) that the European put price goes below
the intrinsic value when the option is deep in the money. In fact, deep in the
money, the put is similar to a forward contract to sell the stock for price K
at time 7T, which is worth Ke™"* — Sy, which is less than the intrinsic value
K — Sp. A computational method for computing American option prices must
have a mechanism that prevents the f(s,t) from falling below V(s).

The simplest mechanism for doing this is as follows. Suppose you have
computed the (approximation to the) American price at time t; in the form
of numbers® Fj, ~ f(zj,tx). We first use the finite difference formula (26) to
compute tentative values at time t5_1:

Fj’k,1 = aFj+1,k + ijk + CFj+17k . (32)

We then restore the necessary inequality by taking the max with the intrinsic
value:

ijkfl = Imax (ﬁj,k,l,V(ij . (33)
The computed early exercise boundary is
b(ty) = By = max{j| Fjr=V(x;)} .

This computational strategy may be understood from the point of view of
the person making the decision of when to exercise. If she holds the option (and
has not exercised already), at time ¢;_1, she has to choose between exercising
and not exercising. If she exercised, she gets value equal to the intrinsic value
V(x;). If she holds, she gets (in the risk neutral world) expected value Fj _;
given by (32). She choses the greater of these, which is the formula (33). This is
explained more completely in the context of the binomial tree model in Section
8 of Kohn’s notes.

3We go back and forth between 2 and s variables as is convenient.

12

It goes without saying that we would not focus entirely on computational
methods for pricing American style options if there were an explicit formula like
the Black Scholes formula. You also can imagine that we would not waste time
talking about finite difference methods for European style options if that were
out only target. We value vanilla European options using the Black Scholes
formula, but almost any departure from that — early exercise features, volatility
surfaces, other exotio features — puts us in a position where we must solve a
PDE (or do Monte Carlo in extreme cases).

13

