

Fall 2004 Calculus I, sections 4, 5, 6, Courant Institute of Mathematical Sciences, NYU.

Homework 4, due October 4

Self check (not to hand in, answers are in the back of the book):

Section 1.6: 17, 25, 29, 61, 69.

Section 2.5: 1.

Section 3.6: 5, 17, 21, 27, 33, 43.

To hand in:

Section 1.6: 18, 24, 30, 62, 70.

Section 2.5: 2, 36 (hint: multiply by $\frac{bx}{ax}$).

Section 3.6: 4, 18, 22, 32, 44.

More problems (to hand in)

1. For small x we have the approximations $\sin(x) \approx x$ and $\cos(x) \approx 1 - x^2/2$.

For any y and x we have the angle sum formula

$$\sin(y + x) = \sin(y) \cos(x) + \cos(y) \sin(x) .$$

Using these, we can get approximations to $\sin(y + x)$ if we know $\sin(y)$ and $\cos(y)$, and x is small. Use this approximation to estimate $A = \sin(50^\circ)$ and $B = \sin(60^\circ)$ using $y = 45^\circ$, $\sin(45^\circ) = \cos(45^\circ) = 1/\sqrt{2} \approx .70711$. Call the approximate values a and b respectively. Use a calculator to evaluate $A - a$ and $B - b$. Which of A or B is approximated more accurately? Why? (Be careful to convert to radians as needed.)

2. An airplane is flying at a constant height of 3000 Meters (just under 10,000 feet) directly toward me at 500 Km/h (approximately 300 Miles/h). Its horizontal distance from me is 6 Km, so that its total distance is just under 7 Km.
 - a. What angle does the line from me to the plane make to the horizontal?
 - b. How fast is that angle increasing? Give the answer in radians per hour, then convert to radians per minute or radians per second, whichever is the most informative. (Hint: let $x(t)$ be the horizontal distance, $\theta(t)$ the angle, and H the (constant) height. Then $\tan(\theta) = H/x$. Differentiate both sides with respect to t (the derivative of the left side must equal the derivative of the right side). Use the chain rule for both sides. On the left we get the unknown $d\theta/dt$ and on the right the known dx/dt .)