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Always check the classes message board before doing any work on the assignment.

Assignment 9, due April 6

Corrections: April 8 (after due date, sorry) The discriminant formula in ex-
ercise 1d corrected to ac − b2 from ac − 4b2. The corrected formula takes into
account the 2 in ax2 + 2bxy + cy2.

1. Prove the following facts about polynomial solutions in the finite field Fp
with p 6= 2:

(a) The equation x2 = z has a solution for exactly half of the z 6= 0.

(b) The equation xk = z has exactly one solution for all z, if k is odd.
(The case k = p is different and simpler than k 6= p. If you get stuck
for general k, try x3 = z first.)

(c) The equation x4 = z has solutions for exactly half of all z 6= 0 or
exactly a quarter of all z 6= 0 depending on whether p = 1 or p = −1
mod 4.

(d) A binary quadratic form is a two variable (“binary” means two argu-
ments) homogeneous (“form” means homogeneous polynomial) quadratic
polynomial function of the form f(x, y) = ax2+2bxy+cy2. The coeffi-
cients a, b, c, are in Fp. The form is non-degenerate if D = ac−b2 6= 0.
The equation f(x, y) = z has a solution for any z ∈ Fp if f is non-
degenerate. Hint: This took me a while to figure out. My approach
(hinted at here) may not be the simplest. The hardest things (for
me) were the two “(why?)” facts. You can write the equation in
matrix form as(
x y

)(a b
b c

)(
x
y

)
= z , RtWR = z , R =

(
x
y

)
, W =

(
a b
b c

)
.

Look for a non-singular A ∈ GL(2,Fp) and consider linear changes

of variable S = AR so that f takes the form StW̃S, where W̃ is as
simple as possible (diagonal, ±1 on the diagonal). (GL(n,F) is the
general linear group, which is set of n×n matrices with entries in the
field F that are invertible. The Michael Artin textbook has material
on canonical forms for quadratic forms.) If you can put the equation
in the form x2− y2 = z, then another linear transformation puts the
equation in the form uv = z, so there is a solution u for any v and z.
The (x, y) for a given z cannot be unique in general, because there
are p2 pairs (x, y) and only p values of z. If p = −1 mod 4 then you
might have to settle for the form x2+y2 = z, with a possibly different
z. With y = 0, you can get the values Q =

{
x2 | x ∈ Fp , x 6= 0

}
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(“Quadrat” is German for “square” and gives English “quadratic”
for squares). Then you have to get the values z /∈ Q using non-zero
y. You can see that the set Q+ 1 = {z + 1 | z ∈ Q} has Q ⊂ F∗p (i.e.,
does not contain zero) and therefore Q + 1 6= Q (why?). Therefore
there is (x, y) with z = x2 + y2 /∈ Q. The pairs tx2 + ty2 get the rest
of Qc (why?).

2. Suppose K is a finite normal extension of Q. The algebraic integers in K
are elements α ∈ K that satisfy equations f(α) = 0, where f ∈ Z[x] is
monic. The set of algebraic integers, OK , is a ring (assignment 7). This
exercise shows that OK is a noetherian ring. If the steps here seem too
abstract, consider solving exercise 3 as you solve this one.

(a) Show that for any x ∈ K, there is an integer r so that rx ∈ OK .
[A special case of this is familiar to me from high school algebra,

where we were told to replace expressions like 1√
2

with
√
2
2 having

a “rational integer downstairs”. With r = 2 and x = 1√
2
∈ Q[

√
2],

we have rx =
√

2 ∈ OQ[
√
2]. Note that α =

√
2 ∈ OQ[

√
2] because it

satisfies the monic integer polynomial equation α2 − 2 = 0.]

(b) Let G be the Galois group Gal(K/Q). For any x ∈ K, the trace is

Tr(x) =
∑
σ∈G

σ(x) .

Show that Tr(x) ∈ Q for any x ∈ K.

(c) A bilinear form is a function f(x, y) that is linear in x for every y
and linear in y for every x. Show that f(x, y) = Tr(xy) is a bilinear
form on K with values in Q.

(d) A bilinear form is non-degenerate if the linear map x→ f(x, y) is not
the zero map unless y = 0, and the map y → f(x, y) is not the zero
map unless x = 0. Show that f(x, y) = Tr(xy) is non-degenerate.

(e) Suppose ξ1, . . ., ξn form a basis for an n dimensional vector space
V over a field F. A dual basis with respect to a non-degenerate
quadratic form f : V × V → F is a set of elements ηk ∈ V so that
f(ξj , ηk) = δjk. This δ is the Kronecker delta symbol, with δjk = 0
if j 6= k and δkk = 1, for all j and k. Show that for every basis
and non-degenerate bilinear form there is a dual basis. Hint: This
can be done, among other ways, using Emil Artin (Galois Theory
book) style linear algebra. The matrix that “represents” f in the
ξk basis is non-singular if f is non-degenerate. Suppose u ∈ V has
representation

u =

n∑
k=1

akξk .
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Show that if ηk is the dual basis, then the “expansion coefficients”
are given by

aj = f(u, ηj) .

(f) Let elements ξj ∈ K be a basis of K over Q. Use part (a) to show
that there is a basis with ξj ∈ OK for all j. Let r be a rational
integer. Let Mr be the set of elements x ∈ K so that

x =
1

r

n∑
j=1

ajξj , all aj ∈ Z .

Show that Mr is a noetherian module over Z.

(g) Show that if x ∈ OK and y ∈ OK , then Tr(xy) ∈ OK .

(h) Let ηj be the elements of the dual basis to the basis ξj ∈ K, with
respect to the bilinear form Tr(x, y). Show that Show that there is a
rational integer r so that rηj ∈ OK for all j. Use this to show that
there is a fixed r so that if α ∈ OK , then α ∈Mr for some r.

(i) Show that OK , as a module over Z is a noetherian module. Use this
to show that OK is a noetherian ring.

3. Go through exercise 2 for the specific field K = Q[i
√
d]. Show that ξ1 = 1

and ξ2 = i
√
d is a basis. If x = αξ1 +βξ2 and y = γξ1 +δξ2, find a formula

for Tr(xy) in terms of α, β, γ, and δ. Find the dual basis, η1, and η2.
Find r so that rη1 and rη2 are in OQ[i

√
d]. Show that if x ∈ OQ[i

√
d], then

x = 1
2

(
a+ i

√
d b
)

, with rational integers a and b. (Note, it may be that

r 6= 2, so this may require working out formulas in more detail.)

3


