Honors Algebra II, Courant Institute, Spring 2020
http://www.math.nyu.edu/faculty/goodman/teaching/HonorsAlgebraII2020/HonorsAlgebraII.html
Always check the classes message board before doing any work on the assignment.

Assignment 8, March 30

Corrections: none yet.

1. Use quadratic reciprocity and the multiplicative property of the Legendre symbol to determine which rational primes p have $\left(\frac{3}{p}\right)=1$ and which primes have $\left(\frac{-3}{p}\right)=1$. (This completes the partial result that was in exercise 5 of assignment 7 . This approach is less painful.)
2. Suppose $p \in \mathbb{Z}[i]$ is a Gaussian prime. For $x \in \mathbb{Z}[i]$ and $x \notin(p)$, define the Legendre symbol $\left(\frac{x}{p}\right)$ to be ± 1 depending on whether x is a square \bmod p in $\mathbb{Z}[i] /(p)$. Define $\left(\frac{x}{p}\right)=0$ if $x \in(p)$.
(a) Show that $\left(\frac{-1}{p}\right)=1$ for all p.
(b) Show that $\left(\frac{x}{p}\right)$ is multiplicative.
(c) Find $x \in \mathbb{Z}[i]$ with $x^{2}=i \bmod (3)$. Here, (3) is the principal ideal generated by 3 . We seek $x \in \mathbb{Z}[i]$ so that $x^{2}-i \in(3)$.
(d) For an ideal I of a ring R, the norm is the number of elements in the quotient:

$$
N(I)=|R / I| .
$$

We talk about norms of mostly for prime ideals in rings of algebraic integers where the norm is finite and the quotient is a field. $N(I)$ is also called the index of I in R (terminology often used for subgroups of groups). Show that $N((p))=|p|^{2}$. [This was on an old assignment, but please review the proof.]
(e) Show that $\left(\frac{i}{p}\right)=1$ if $N((p))=1 \bmod 8$. Explain how this is consistent with part (c). Hint: The multiplicative group of the quotient field has a generator.
(f) Use part (a) to show that $N((p))=1 \bmod 4$ for every Gaussian prime ideal.
(g) Let q be a rational prime. Explain how parts (d) and (f) imply that q is also prime in $\mathbb{Z}[i]$ if $q=3 \bmod 4$.
3. Let $R=\mathbb{C}[x, y]$ and let $I \subset R$ be the set of polynomials $f(x, y)$ with $f(1,0)=0$ and $f(-1,0)=0$.
(a) Show that I is an ideal.
(b) Show that $I=\left(y, x^{2}-1\right)$. [The Hilbert basis theorem implies that I is finitely generated, but it is in general hard to find an explicit set of generators.]
4. Let $\mathcal{O}_{\overline{\mathbb{Q}}}$ be the ring of algebraic integers in the algebraic closure $\overline{\mathbb{Q}} / \mathbb{Q}$. Recall that $y \in \overline{\mathbb{Q}}$ is an algebraic integer if there is a (monic, integer) polynomial $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}\left(a_{j} \in \mathbb{Z}\right)$ with $f(y)=0$. Show that $\mathcal{O}_{\overline{\mathbb{Q}}}$ is not Noetherian. Hint: You can take the square root of anybody in $\mathcal{O}_{\overline{\mathbb{Q}}}$.
5. Let \mathbb{Z}_{p} be the p-adic integers.
(a) Show that for every $x \in \mathbb{Z}_{p}$ there is a unique sequence of "pidgits" (sounds like "digits"), $a_{k} \in\{0, \ldots, p-1\}$, so that the "pidgit sum" below converges and is equal to x :

$$
x=\sum_{k=0}^{\infty} a_{k} p^{k}
$$

Warning: Do not take uniqueness for granted. The digits d_{k} in the digit sum representation of a real number $x=\sum d_{k} 10^{-k}$ are not always unique.
(b) Find the pidgit sum representation for $\frac{1}{6}$ in \mathbb{Z}_{7}. Said differently, find a pidgit sum x so that $6 x=1$ in \mathbb{Z}_{7}. You can start by assuming a pidgit sum exists and figuring out what the pidgits have to be, starting with a_{0}. Once you see the answer, you can verify that it is correct.
(c) Which elements of \mathbb{Z}_{p} are units?
(d) What are the ideals of \mathbb{Z}_{p} ?
(e) Show that \mathbb{Z}_{p} is a Noetherian ring.

