Honors Algebra II, Courant Institute, Spring 2020

http://www.math.nyu.edu/faculty/goodman/teaching/HonorsAlgebraII2020/HonorsAlgebraII.html Always check the classes message board before doing any work on the assignment.

Assignment 7, due March 23

Corrections:

- Exercise 5 added March 12. It is not required but please consider doing it you will get extra credit. Make sure to read the Serre proof that $\binom{2}{p} = 1$ for $p = \pm 1 \mod 8$.
- (March 21) Exercise 1 clarified that \mathbb{E} is a finite degree extension of \mathbb{Q} .
- (March 21) Corrections to exercise 5b: replace α (incorrect) with $y = \alpha + \alpha^{-1}$, Replace $\overline{\mathbb{F}}_6$ (silly) with $\overline{\mathbb{F}}_p$.
- 1. Suppose $\omega \in \mathbb{C}$ is a primitive p^{th} root of unity (p being a rational prime) and $\mathbb{Q}[\omega]/\mathbb{Q}$ is the corresponding cyclotomic extension. Let σ be a generator of the cyclic group $\operatorname{Gal}(\mathbb{Q}[\omega]/\mathbb{Q})$. This means that $\sigma^{p-1} = \operatorname{id}$ and $\sigma^k \neq \operatorname{id}$ for $1 \leq k < p-1$. Let $\mathbb{E}/\mathbb{Q}[\omega]$ finite degree be a field extension. We seek an extension $\tilde{\sigma}$ that is an automorphism of \mathbb{E} that fixes \mathbb{Q} so that $\tilde{\sigma}(x) = \sigma(x)$ if $x \in \mathbb{Q}[\omega]$.
 - (a) Show that if $\mathbb{E}/\mathbb{Q}[\omega]$ is a normal extension, then there is such a $\tilde{\sigma}$ with the property that $\tilde{\sigma}^{p-1} = \mathrm{id}$.
 - (b) Find an example of $\mathbb{E}/\mathbb{Q}[\omega]$ and a $\tilde{\sigma}$ with $\tilde{\sigma}^{p-1} \neq id$.
 - (c) Drop the hypothesis that $\mathbb{E}/\mathbb{Q}[\omega]$ is a normal extension. Is it still true that there is an extension $\tilde{\sigma}$? Is it still possible to choose $\tilde{\sigma}$ with $\tilde{\sigma}^{p-1} = \mathrm{id}$?
- 2. Let \mathbb{Z}_p be the *p*-adic integers from Assignment 6. Write any $x \in \mathbb{Q}$, in the form $x = p^n(a/b)$ where *a* and *b* are relatively prime to *p*. (It is OK for this definition if *a* and *b* are not relatively prime to each other.) Define the p adic valuation to be

$$|x|_p = p^{-n}$$
.

Show that the following definitions of \mathbb{Q}_p are equivalent. In the process, show that \mathbb{Q}_p is a field, with $\mathbb{Q} \subset \mathbb{Q}_p$ as a dense sub-field.

- (a) \mathbb{Q}_p is the completion of \mathbb{Q} in the *p*-adic norm $|x-y|_p$.
- (b) $\mathbb{Q}_p = \mathbb{Z}_p[p^{-1}].$
- (c) \mathbb{Q}_p is the field of fractions of the ring \mathbb{Z}_p (in particular, \mathbb{Z}_p has no zero-divisors).

- 3. A function $R(x,y): \mathbb{Q}_p \times \mathbb{Q}_p \to \mathbb{Q}_p$ (or any other metric space in place of \mathbb{Q}_p is continuous at (x, y) if for every $\epsilon > 0$ there is a $\delta(x, y) > 0$ so that if $|\xi|_p \leq \delta$ and $|\eta|_p \leq \delta$, then $|R(x+\xi,y+\eta)-R(x,y)|_p \leq \epsilon$. A function is uniformly continuous on $A \subseteq \mathbb{Q}_p$ if it is possible to find δ independent of x and y if $x \in A$ and $y \in A$.
 - (a) Show that addition is uniformly continuous on \mathbb{Q}_p .
 - (b) Show that multiplication is continuous but not uniformly continuous on \mathbb{Q}_p .
 - (c) Show that multiplication is uniformly continuous on \mathbb{Z}_p .
 - (d) Show that multiplication is uniformly continuous on any "ball" of the form $B_r = \left\{ x \in \mathbb{Q}_p \text{ with } |x|_p \le r \right\}.$
 - (e) Show that part (d) implies part (c) by showing that $\mathbb{Z}_p = B_1$.
 - (f) Show that inversion $(x \to x^{-1})$ is continuous on $\mathbb{Q}_p \{0\}$ (meaning \mathbb{Q}_p) with the "zero set", $\{0\}$, removed). Show that inversion is uniformly continuous on B_r^c (the complement of B_r).
 - (g) Show that the formal derivative on polynomials agrees with the limit definition

$$f'(x) = \lim_{\|h\|_p \to 0} \frac{f(x+h) - f(x)}{h}$$

Is the monomial $f(x) = x^p$ special in this regard?

- 4. Let $\alpha \in \overline{\mathbb{F}}_p$ (this is the algebraic closure of the finite field) be a primitive 6^{th} root of unity.
 - (a) Show that $\xi = e^{i\pi/3} \in \mathbb{C}$ (this is a primitive 6th root of 1 in \mathbb{C}) satisfies the identities
 - $\xi + \xi^{-1} = 1$

•
$$\xi^3 = -1$$

- $\xi^4 = -\xi$ $\xi^5 = -\xi^2$
- (b) Define $y = \alpha + \alpha^{-1} \in \overline{\mathbb{F}}_p$ and show that $y \in \mathbb{F}_p$.
- (c) Calculate y^2 and show that y^2 satisfies a quadratic equation with roots y = 1 and y = -2. *Hint*: Some of the part (a) relations may apply to α .
- (d) Show by direct calculation that y = 1 in \mathbb{F}_7 . *Hint*: You will find that there is only one possible α .
- (e) Is there any \mathbb{F}_p where y = -2?
- 5. (Added late, do it as you have time) Use the notation and results of Exercise 4. Assume that $\alpha + \alpha^{-1} = 1$ if you can't prove it. Use $z = \alpha - \alpha^{-1}$ to show that -3 is a square mod p if $p = 1 \mod 6$ (p = 7, 13, 19, 31, ...). Use the method that was used for showing 2 is a square mod p if p = 1 or $p = -1 \mod 8$ (page 7 of A Course in Arithmetic).

- (a) Use trigonometry to show that in \mathbb{C} , $\xi \xi^{-1} = \xi \overline{\xi} = i\sqrt{3}$. Explain how this suggests $z^2 = -3$.
- (b) Show that $z^2 = -3$ if $y = \alpha + \alpha^{-1} = 1$.
- (c) Compute z^6 in $\overline{\mathbb{F}}_p$ to show that $z \in \mathbb{F}_p$ if $p = 1 \mod 6$.
- (d) Show that 3 is a square mod p if $p = 1 \mod 12$ but not if $p = 7 \mod 12$.