Honors Algebra II, Courant Institute, Spring 2020
http://www.math.nyu.edu/faculty/goodman/teaching/HonorsAlgebraII2020/HonorsAlgebraII.html
Always check the classes message board before doing any work on the assignment.

Assignment 7, due March 23

Corrections:

- Exercise 5 added March 12. It is not required but please consider doing it - you will get extra credit. Make sure to read the Serre proof that $\left(\frac{2}{p}\right)=1$ for $p= \pm 1 \bmod 8$.
- (March 21) Exercise 1 clarified that \mathbb{E} is a finite degree extension of \mathbb{Q}.
- (March 21) Corrections to exercise 5b: replace α (incorrect) with $y=$ $\alpha+\alpha^{-1}$, Replace $\overline{\mathbb{F}}_{6}$ (silly) with $\overline{\mathbb{F}}_{p}$.

1. Suppose $\omega \in \mathbb{C}$ is a primitive $p^{t h}$ root of unity (p being a rational prime) and $\mathbb{Q}[\omega] / \mathbb{Q}$ is the corresponding cyclotomic extension. Let σ be a generator of the cyclic group $\operatorname{Gal}(\mathbb{Q}[\omega] / \mathbb{Q})$. This means that $\sigma^{p-1}=\mathrm{id}$ and $\sigma^{k} \neq \mathrm{id}$ for $1 \leq k<p-1$. Let $\mathbb{E} / \mathbb{Q}[\omega]$ finite degree be a field extension. We seek an extension $\widetilde{\sigma}$ that is an automorphism of \mathbb{E} that fixes \mathbb{Q} so that $\tilde{\sigma}(x)=\sigma(x)$ if $x \in \mathbb{Q}[\omega]$.
(a) Show that if $\mathbb{E} / \mathbb{Q}[\omega]$ is a normal extension, then there is such a $\widetilde{\sigma}$ with the property that $\widetilde{\sigma}^{p-1}=\mathrm{id}$.
(b) Find an example of $\mathbb{E} / \mathbb{Q}[\omega]$ and a $\widetilde{\sigma}$ with $\widetilde{\sigma}^{p-1} \neq \mathrm{id}$.
(c) Drop the hypothesis that $\mathbb{E} / \mathbb{Q}[\omega]$ is a normal extension. Is it still true that there is an extension $\widetilde{\sigma}$? Is it still possible to choose $\widetilde{\sigma}$ with $\widetilde{\sigma}^{p-1}=\mathrm{id} ?$
2. Let \mathbb{Z}_{p} be the p-adic integers from Assignment 6 . Write any $x \in \mathbb{Q}$, in the form $x=p^{n}(a / b)$ where a and b are relatively prime to p. (It is OK for this definition if a and b are not relatively prime to each other.) Define the p-adic valuation to be

$$
|x|_{p}=p^{-n}
$$

Show that the following definitions of \mathbb{Q}_{p} are equivalent. In the process, show that \mathbb{Q}_{p} is a field, with $\mathbb{Q} \subset \mathbb{Q}_{p}$ as a dense sub-field.
(a) \mathbb{Q}_{p} is the completion of \mathbb{Q} in the p-adic norm $|x-y|_{p}$.
(b) $\mathbb{Q}_{p}=\mathbb{Z}_{p}\left[p^{-1}\right]$.
(c) \mathbb{Q}_{p} is the field of fractions of the ring \mathbb{Z}_{p} (in particular, \mathbb{Z}_{p} has no zero-divisors).
3. A function $R(x, y): \mathbb{Q}_{p} \times \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$ (or any other metric space in place of $\left.\mathbb{Q}_{p}\right)$ is continuous at (x, y) if for every $\epsilon>0$ there is a $\delta(x, y)>0$ so that if $|\xi|_{p} \leq \delta$ and $|\eta|_{p} \leq \delta$, then $|R(x+\xi, y+\eta)-R(x, y)|_{p} \leq \epsilon$. A function is uniformly continuous on $A \subseteq \mathbb{Q}_{p}$ if it is possible to find δ independent of x and y if $x \in A$ and $y \in A$.
(a) Show that addition is uniformly continuous on \mathbb{Q}_{p}.
(b) Show that multiplication is continuous but not uniformly continuous on \mathbb{Q}_{p}.
(c) Show that multiplication is uniformly continuous on \mathbb{Z}_{p}.
(d) Show that multiplication is uniformly continuous on any "ball" of the form $B_{r}=\left\{x \in \mathbb{Q}_{p}\right.$ with $\left.|x|_{p} \leq r\right\}$.
(e) Show that part (d) implies part (c) by showing that $\mathbb{Z}_{p}=B_{1}$.
(f) Show that inversion $\left(x \rightarrow x^{-1}\right)$ is continuous on $\mathbb{Q}_{p}-\{0\}$ (meaning \mathbb{Q}_{p} with the "zero set", $\{0\}$, removed). Show that inversion is uniformly continuous on B_{r}^{c} (the complement of B_{r}).
(g) Show that the formal derivative on polynomials agrees with the limit definition

$$
f^{\prime}(x)=\lim _{|h|_{p} \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Is the monomial $f(x)=x^{p}$ special in this regard?
4. Let $\alpha \in \overline{\mathbb{F}}_{p}$ (this is the algebraic closure of the finite field) be a primitive $6^{\text {th }}$ root of unity.
(a) Show that $\xi=e^{i \pi / 3} \in \mathbb{C}$ (this is a primitive $6^{\text {th }}$ root of 1 in \mathbb{C}) satisfies the identities

- $\xi+\xi^{-1}=1$
- $\xi^{3}=-1$
- $\xi^{4}=-\xi$
- $\xi^{5}=-\xi^{2}$
(b) Define $y=\alpha+\alpha^{-1} \in \overline{\mathbb{F}}_{p}$ and show that $y \in \mathbb{F}_{p}$.
(c) Calculate y^{2} and show that y^{2} satisfies a quadratic equation with roots $y=1$ and $y=-2$. Hint: Some of the part (a) relations may apply to α.
(d) Show by direct calculation that $y=1$ in \mathbb{F}_{7}. Hint: You will find that there is only one possible α.
(e) Is there any \mathbb{F}_{p} where $y=-2$?

5. (Added late, do it as you have time) Use the notation and results of Exercise 4. Assume that $\alpha+\alpha^{-1}=1$ if you can't prove it. Use $z=\alpha-\alpha^{-1}$ to show that -3 is a square $\bmod p$ if $p=1 \bmod 6(p=7,13,19,31, \ldots)$. Use the method that was used for showing 2 is a square $\bmod p$ if $p=1$ or $p=-1 \bmod 8($ page 7 of A Course in Arithmetic).
(a) Use trigonometry to show that in $\mathbb{C}, \xi-\xi^{-1}=\xi-\bar{\xi}=i \sqrt{3}$. Explain how this suggests $z^{2}=-3$.
(b) Show that $z^{2}=-3$ if $y=\alpha+\alpha^{-1}=1$.
(c) Compute z^{6} in $\overline{\mathbb{F}}_{p}$ to show that $z \in \mathbb{F}_{p}$ if $p=1 \bmod 6$.
(d) Show that 3 is a square $\bmod p$ if $p=1 \bmod 12$ but not if $p=7 \bmod$ 12.
