Honors Algebra II, Courant Institute, Spring 2020
http://www.math.nyu.edu/faculty/goodman/teaching/HonorsAlgebraII2020/HonorsAlgebraII.html
Always check the classes message board before doing any work on the assignment.

Assignment 6, due March 9

Corrections: March 3: Exercise 3 edited to say "integrally closed" instead of "algebraically closed", Exercise 9 edited to change $x+n$ to x_{n}.

1. Choose an integer $n>2$ and let $\Phi_{n} \subseteq \mathbb{Z} /(n)$ be the set of equivalence classes $k \bmod n$ so that $\operatorname{gcd}(k, n)=1$. The Euler function ϕ is defined by $\phi(n)=\left|\Phi_{n}\right|$.
(a) Show that Φ_{n} is an abelian group of order $\phi(n)$ under multiplication. [This is a well known fact that you may have seen and is in many books. Please try to find a proof on your own.]
(b) Find an n so that you can show that Φ_{n} is not a cyclic group. I don't know how to do this except by trying examples. You don't have to try primes (why not?).
(c) Let \mathbb{F} / \mathbb{Q} be a splitting field of $f(x)=x^{n}-1$. Let $\omega_{1}, \ldots, \omega_{n}$ be the roots of p in \mathbb{F}. Show that the ω_{k} are distinct and closed under multiplication. Show that there is an ω_{*} so that if $a^{n}=1$ in \mathbb{F}, then $a=\omega_{*}^{k}$ for some integer k (which is not unique). [Any such ω_{*} is a primitive root of unity.] Hint: It is possible to take $\mathbb{F} \subset \mathbb{C}$. Why?
(d) Let $G=\operatorname{Gal}(\mathbb{F} / \mathbb{Q})$ be the Galois group and take $\sigma \in G$. Show that if ω_{*} is a primitive root of unity, then $\sigma\left(\omega_{*}\right)$ also is a primitive root of unity. Hint: You can characterize primitive roots of unity by what ω_{*}^{k} cannot be for $k<n$.
(e) A polynomial p_{n} is defined by

$$
p_{n}(x)=\prod_{\omega_{k} \text { primitive }}\left(x-\omega_{k}\right) .
$$

Show that $p \in \mathbb{Q}[x]$ and that p is separable. Show that \mathbb{F} is the splitting field of p.
(f) Show that if ω_{*} is a primitive root of unity, then the map on primitive roots $\omega_{k} \rightarrow \omega_{*} \omega_{k}$ defines an element $\sigma \in G$.
(g) Show that $\operatorname{Gal}(\mathbb{F} / \mathbb{Q})=\Phi_{n}$. A field \mathbb{F} of this type (roots of unity) is called cyclotomic.
2. Show that if $f(a)=0$ and $a \neq 1$ in a cyclotomic field of roots of unity of order n, then a is a primitive root of unity a cyclotomic field of order n / d. Use this to show that the prime factorization of $f_{n}(x)=x^{n}-1$ is

$$
x^{n}-1=\prod_{k \mid n} p_{k}(x) .
$$

Define the product to include the "trivial factor" $(x-1)$. Use this to verify the Euler ϕ function formula:

$$
n=\sum_{k \mid n} \phi(k)
$$

[And try to say "famous ϕ function formula" five times quickly.]
3. Let R be a ring that is a unique factorization domain and an integral domain (redundant?). Let K be the field of fractions. Let \mathbb{E} be a finite degree extension field of K. We say $a \in \mathbb{E}$ is algebraic over R if there is a monic polynomial $f \in R[x]$ with $f(a)=0$ (a generalization of the definition from Assignment 5, which was for $R=\mathbb{Z})$. We say that R is integrally closed in \mathbb{E} if there is no $a \in \mathbb{E}$ that is algebraic over R except $a \in R$. We say that R is integrally closed if it is integrally closed in K (the fraction field). Show that R is integrally closed. Hint: An element of K may be written

$$
a=\frac{\prod_{i} p_{i}^{\alpha_{i}}}{\prod_{j} q_{j}^{\beta_{j}}}
$$

Here $\left\{p_{i}\right\}$ and $\left\{q_{j}\right\}$ are disjoint finite sets of irreducibles in R and the α_{i} and β_{j} are positive integers. If a is the root of a monic polynomial of degree n, (show that) there is a $y \in R$ with

$$
\prod_{i} p_{i}^{n \alpha_{i}}=y \prod_{j} q_{j}^{\beta_{i}}
$$

[The giveaway hint is because this fact is called Gauss' lemma and the proof is in most books. A harder theorem, also called Gauss' lemma but not part of this exercise, is that a monic $f \in R[x]$ is irreducible in $R[x]$ if it is irreducible in $K[x]$. This exercise shows that f has a linear factor in $R[x]$ only if it has a linear factor in $K[x]$.
4. Suppose $a>1$ is a positive integer that is not of the form $a=b^{n}$ for an integer b. Show that $f(x)=x^{n}-a$ is irreducible in \mathbb{Q}.
5. Suppose p is a rational prime and $a>1$ is an integer that is not of the form $a=b^{p}$ for an integer b. Let \mathbb{E} / \mathbb{Q} be the splitting field of $x^{p}-a$. Show that $\operatorname{deg}(\mathbb{E} / \mathbb{Q})=p(p-1)$ and describe the Galois group. Hint: If you adjoin $a^{\frac{1}{p}}$ first (look at $\left.\mathbb{Q}\left[a^{\frac{1}{p}}\right] / \mathbb{Q}\right)$, you learn p divides $\operatorname{deg}(\mathbb{E} / \mathbb{Q})$. If you split $x^{p}-1$ first, you get different information that suggests G has two generators. Compute the commutator. The example $x^{3}-2$ is a model for the general case.
6. (Extra credit, don't work on this too long.) Find an example of $f \in \mathbb{F}_{p}[x]$ that is irreducible but not separable.
7. Let $a \in \mathbb{Z}$ be a rational integer that may be written $a=p^{n} b$ where $p \nmid b$ The p-adic norm (more commonly called the p-adic valuation) of a is

$$
|a|_{p}=p^{-n}
$$

Integers x and y are close in the p-adic sense if they agree to a high power of p. Show that this satisfies the ultra-metric inequality

$$
|x-y|_{p} \leq \max \left(|x|_{p},|y|_{p}\right) .
$$

Show that this implies the ordinary triangle inequality

$$
|x-y|_{p} \leq|x|_{p}+|y|_{p}
$$

8. For any $f \in \mathbb{Z}[x]$, and any $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$, show that

$$
\begin{aligned}
|f(x+y)-f(x)|_{p} & \leq|y|_{p} \\
\left|f(x+y)-\left[f(x)+f^{\prime}(x) y\right]\right|_{p} & \leq|y|_{p}^{2} .
\end{aligned}
$$

[These are "familiar" from ordinary calculus. The first says that a polynomial is Lipschitz continuous, but here the Lipschitz constant is always 1. The second says that the first derivative approximation is accurate to $O\left(|y|_{p}^{2}\right)$, but again with a constant 1. This The derivative f^{\prime} is the formal derivative.] Use the first inequality to show (or do it directly) that if $f^{\prime}(x) \neq 0 \bmod p$, and $|y|_{p}<1$, then $f^{\prime}(x+y) \neq 0 \bmod p$.
9. Newton's method from ordinary calculus to solve the equation $f(x)=0$ is the iteration scheme

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Suppose $f \in \mathbb{Z}[x]$ and that if there is an $x_{0} \in \mathbb{Z}$ with $f\left(x_{0}\right)=0 \bmod p$ and $f^{\prime}\left(x_{0}\right) \neq 0 \bmod p$. Show that there is a sequence $x_{n} \in \mathbb{Z}$ with

$$
\begin{aligned}
\left|x_{n}-x_{n-1}\right|_{p} & \leq p^{-n} \\
\left|f\left(x_{n}\right)\right|_{p} & \leq p^{-n}
\end{aligned}
$$

[The conclusion of this exercise, sometimes re-packaged using part (c) of exercise 10, is called Hensel's lemma.]
10. (Extra credit. Do this only if you have time and have taken the right analysis class.) The p-adic inteegers, written \mathbb{Z}_{p}, are the completion of \mathbb{Z} in the p-adic valuation. Suppose x_{n} and y_{n} are Cauchy sequences in \mathbb{Z} with respect to $|\cdot|_{p}$ that represent $x \in \mathbb{Z}_{p}$ and $y \in \mathbb{Z}_{p}$ respectively. The Cauchy sequences defining $x+y$ and $x y$ are $x_{n}+y_{n}$ and $x_{n} y_{n}$.
(a) Show that these operations are well defined, which means showing that $x+y$ and $x y$ in \mathbb{Z}_{p} are independent of which Cauchy sequences represent x and y.
(b) Show that \mathbb{Z}_{p} is a ring with these operations.
(c) Show that if $f \in \mathbb{Z}[x]$ and there is an $x_{0} \in \mathbb{Z}$ with $f\left(x_{0}\right)=0 \bmod p$ and $f^{\prime}(x) \neq 0 \bmod p$, then $f(x)=0$ for some $x \in \mathbb{Z}_{p}$.
(d) Show that \mathbb{Z}_{p} is compact. If $x_{k} \in \mathbb{Z}_{p}$ is any sequence, show that there is a subsequence $k_{j} \rightarrow \infty$ as $j \rightarrow \infty$ so that $x_{k_{j}}$ is a Cauchy sequence.

