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Always check the classes message board before doing any work on the assignment.

Assignment 6, due March 9

Corrections: March 3: Exercise 3 edited to say “integrally closed” instead of
“algebraically closed”, Exercise 9 edited to change x+ n to xn.

1. Choose an integer n > 2 and let Φn ⊆ Z/(n) be the set of equivalence
classes k mod n so that gcd(k, n) = 1. The Euler function φ is defined by
φ(n) = |Φn|.

(a) Show that Φn is an abelian group of order φ(n) under multiplication.
[This is a well known fact that you may have seen and is in many
books. Please try to find a proof on your own.]

(b) Find an n so that you can show that Φn is not a cyclic group. I don’t
know how to do this except by trying examples. You don’t have to
try primes (why not?).

(c) Let F/Q be a splitting field of f(x) = xn − 1. Let ω1, . . ., ωn be
the roots of p in F. Show that the ωk are distinct and closed under
multiplication. Show that there is an ω∗ so that if an = 1 in F, then
a = ωk∗ for some integer k (which is not unique). [Any such ω∗ is a
primitive root of unity.] Hint: It is possible to take F ⊂ C. Why?

(d) Let G = Gal(F/Q) be the Galois group and take σ ∈ G. Show that
if ω∗ is a primitive root of unity, then σ(ω∗) also is a primitive root
of unity. Hint: You can characterize primitive roots of unity by what
ωk∗ cannot be for k < n.

(e) A polynomial pn is defined by

pn(x) =
∏

ωkprimitive

(x− ωk) .

Show that p ∈ Q[x] and that p is separable. Show that F is the
splitting field of p.

(f) Show that if ω∗ is a primitive root of unity, then the map on primitive
roots ωk → ω∗ωk defines an element σ ∈ G.

(g) Show that Gal(F/Q) = Φn. A field F of this type (roots of unity) is
called cyclotomic.

2. Show that if f(a) = 0 and a 6= 1 in a cyclotomic field of roots of unity of
order n, then a is a primitive root of unity a cyclotomic field of order n/d.
Use this to show that the prime factorization of fn(x) = xn − 1 is

xn − 1 =
∏
k|n

pk(x) .
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Define the product to include the “trivial factor” (x−1). Use this to verify
the Euler φ function formula:

n =
∑
k|n

φ(k) .

[And try to say “famous φ function formula” five times quickly.]

3. Let R be a ring that is a unique factorization domain and an integral
domain (redundant?). Let K be the field of fractions. Let E be a finite
degree extension field of K. We say a ∈ E is algebraic over R if there
is a monic polynomial f ∈ R[x] with f(a) = 0 (a generalization of the
definition from Assignment 5, which was for R = Z). We say that R is
integrally closed in E if there is no a ∈ E that is algebraic over R except
a ∈ R. We say that R is integrally closed if it is integrally closed in K
(the fraction field). Show that R is integrally closed. Hint: An element of
K may be written

a =

∏
i

pαi
i∏

j

q
βj

j

Here {pi} and {qj} are disjoint finite sets of irreducibles in R and the αi
and βj are positive integers. If a is the root of a monic polynomial of
degree n, (show that) there is a y ∈ R with∏

i

pnαi
i = y

∏
j

qβi

j .

[The giveaway hint is because this fact is called Gauss’ lemma and the
proof is in most books. A harder theorem, also called Gauss’ lemma but
not part of this exercise, is that a monic f ∈ R[x] is irreducible in R[x] if
it is irreducible in K[x]. This exercise shows that f has a linear factor in
R[x] only if it has a linear factor in K[x].]

4. Suppose a > 1 is a positive integer that is not of the form a = bn for an
integer b. Show that f(x) = xn − a is irreducible in Q.

5. Suppose p is a rational prime and a > 1 is an integer that is not of the
form a = bp for an integer b. Let E/Q be the splitting field of xp − a.
Show that deg(E/Q) = p(p − 1) and describe the Galois group. Hint: If

you adjoin a
1
p first (look at Q[a

1
p ]/Q), you learn p divides deg(E/Q). If

you split xp − 1 first, you get different information that suggests G has
two generators. Compute the commutator. The example x3−2 is a model
for the general case.

6. (Extra credit, don’t work on this too long.) Find an example of f ∈ Fp[x]
that is irreducible but not separable.
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7. Let a ∈ Z be a rational integer that may be written a = pnb where p 6 | b
The p−adic norm (more commonly called the p−adic valuation) of a is

|a|p = p−n .

Integers x and y are close in the p−adic sense if they agree to a high power
of p. Show that this satisfies the ultra-metric inequality

|x− y|p ≤ max
(
|x|p , |y|p

)
.

Show that this implies the ordinary triangle inequality

|x− y|p ≤ |x|p + |y|p .

8. For any f ∈ Z[x], and any x ∈ Z and y ∈ Z, show that

|f(x+ y)− f(x)|p ≤ |y|p
|f(x+ y)− [f(x) + f ′(x)y]|p ≤ |y|

2
p .

[These are “familiar” from ordinary calculus. The first says that a poly-
nomial is Lipschitz continuous, but here the Lipschitz constant is always
1. The second says that the first derivative approximation is accurate to
O(|y|2p), but again with a constant 1. This The derivative f ′ is the for-
mal derivative.] Use the first inequality to show (or do it directly) that if
f ′(x) 6= 0 mod p, and |y|p < 1, then f ′(x+ y) 6= 0 mod p.

9. Newton’s method from ordinary calculus to solve the equation f(x) = 0 is
the iteration scheme

xn+1 = xn −
f(xn)

f ′(xn)
.

Suppose f ∈ Z[x] and that if there is an x0 ∈ Z with f(x0) = 0 mod p
and f ′(x0) 6= 0 mod p. Show that there is a sequence xn ∈ Z with

|xn − xn−1|p ≤ p
−n

|f(xn)|p ≤ p
−n .

[The conclusion of this exercise, sometimes re-packaged using part (c) of
exercise 10, is called Hensel’s lemma.]

10. (Extra credit. Do this only if you have time and have taken the right
analysis class.) The p−adic inteegers, written Zp, are the completion of
Z in the p−adic valuation. Suppose xn and yn are Cauchy sequences in
Z with respect to |·|p that represent x ∈ Zp and y ∈ Zp respectively. The
Cauchy sequences defining x+ y and xy are xn + yn and xnyn.

(a) Show that these operations are well defined, which means showing
that x+ y and xy in Zp are independent of which Cauchy sequences
represent x and y.
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(b) Show that Zp is a ring with these operations.

(c) Show that if f ∈ Z[x] and there is an x0 ∈ Z with f(x0) = 0 mod p
and f ′(x) 6= 0 mod p, then f(x) = 0 for some x ∈ Zp.

(d) Show that Zp is compact. If xk ∈ Zp is any sequence, show that
there is a subsequence kj → ∞ as j → ∞ so that xkj is a Cauchy
sequence.
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