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Always check the classes message board before doing any work on the assignment.

Assignment 5, due March 2

Corrections: [none yet]

1. Show that if E/Q is the splitting field of a polynomial of degree n, then
deg(E/Q) divides n!.

2. Find the Galois group of the splitting field of x3 − 3x2 + 1 over Q.

3. (Quick introduction for some, quick review for others). Let R be a ring. A
module V over R is an abelian group (written additively) together with an
“R action”, written as multiplication. We assume everything is associative
and distributive. For example, if x ∈ R and y ∈ R and u ∈ V , then
(x + y)u = (xy) + (yu). On the left is addition in R then action of
x + y ∈ R on u ∈ V . On the right is xu ∈ V (x acting on u) added (in
V ) to yu. Also, x(u1 + u2) = xu1 + xu2, etc. If R were a field then this
would make V a vector space, but there is more variety in modules than
in vector spaces.

(a) Show that if I ⊂ R is an ideal, addition in I and multiplication by
x ∈ R makes I a module over R.

(b) Show that if I ⊂ R is an ideal, then R/I is a module in a natural
way.

(c) A set g1 ∈ V , . . ., gn ∈ V is a set of generators of V (or generates V )
if every u ∈ V may be written as

u =

m∑
j=1

xjgj , xj ∈ R .

The representation need not be unique and m need not be minimal.
Give an example of a module generated by one generator that is not
isomorphic to R in the category of modules over R. [Note, this can’t
happen for vector spaces.]

(d) Give an example of a module V ⊂ R that cannot be generated by a
single generator. Hint: p ⊂ Z[i

√
5]. [A proper subspace of a vector

space requires fewer generators (basis vectors), never more.]

4. Suppose E/Q is a finite degree normal extension. An α ∈ E is an algebraic
integer if f(α) = 0 where f ∈ Z[x] is a monic polynomial (monic means f
has leading coefficient 1, so f(x) = xn + bn−1x

n−1 + · · · .)
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(a) Show that the module over Z, V , generated by powers of α is finitely
generated if α is an algebraic integer. Show that αV ⊂ V .

(b) Suppose α ∈ E and V ⊂ E is a finitely generated Z module with
αV ⊂ V . Show that α is an algebraic integer. Hint: Write the action
of multiplication of α in terms of the generators gk of V and show
that α is an eigenvalue of the resulting matrix.

(c) Show that the set of algebraic integers in E forms a ring. Hint: If
gk generate the α module and hj generate the β module, then the
elements gkhj generate a module for α+ β and αβ.

(d) Show that Z[i] (the Gaussian integers) are the algebraic integers in
Q[i]/Q.

5. The field F is algebraically closed if any g ∈ F[x] splits in F. A field
E/F is an algebraic closure of F if E is algebraically closed and no proper
subfield B ⊂ E that contains F is algebraically closed. For example, C is
algebraically closed (the “fundamental theorem of algebra”) and C is an
algebraic closure of R. This exercise gives a construction of an algebraic
closure of finite or countable fields. The construction for fields that are
not countable involves fancier set theory, the axiom of choice in the form
of Zorn’s lemma. Our version will be enough for our class. It is not hard
to prove, but not part of this exercise, that all algebraic closures of F are
isomorphic. We call any one of them “the” algebraic closure.

(a) Suppose K1 ⊂ K2 ⊂ · · · is an infinite sequence of fields. Show that
K is a field, where

K = ∪∞n=1Kn .

Assume Kn+1/Kn is a field extension for each n.

(b) Suppose E/F/K is a three element tower of finite index algebraic field
extensions. Show that every α ∈ E satisfies a polynomial equation
f(α) = 0 where f ∈ K[x]. This is the main idea behind this exercise.

(c) A set S is countable if it is possible to put the elements into an
enumerated list

S = {s1, s2, . . .} .

It’s OK to have repeats. For example, the positive rational numbers
are countable because you can make the list 0

1 ,
1
1 ,

0
2 ,

1
2 ,

2
2 ,

3
2 ,

4
2 ,

0
3 , · · · .

Show that if K is a finite or countable field, then the set of polyno-
mials K[x] is also countable.

(d) Call the list from part (c) f1(x), f2(x), · · · . Let Kn+1 be an extension
field of Kn where fn splits. Show that each of the polynomials fn
splits inthe union K.

(e) Suppose g ∈ Kn[x]. Show that g splits in some Km for m ≥ n.

(f) Suppose g ∈ K[x]. Show that g splits in Kn.
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(g) Let Q be “the” algebraic closure of Q. Show that Q is countable. In
particular, C is not the algebraic closure of Q.

(h) Show that Fp is an infinite field of characteristic p.
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