Honors Algebra II, Courant Institute, Spring 2020
http://www.math.nyu.edu/faculty/goodman/teaching/HonorsAlgebraII2020/HonorsAlgebraII.html
Always check the classes message board before doing any work on the assignment.

Assignment 5, due March 2

Corrections: [none yet]

1. Show that if \mathbb{E} / \mathbb{Q} is the splitting field of a polynomial of degree n, then $\operatorname{deg}(\mathbb{E} / \mathbb{Q})$ divides $n!$.
2. Find the Galois group of the splitting field of $x^{3}-3 x^{2}+1$ over \mathbb{Q}.
3. (Quick introduction for some, quick review for others). Let R be a ring. A module V over R is an abelian group (written additively) together with an " R action", written as multiplication. We assume everything is associative and distributive. For example, if $x \in R$ and $y \in R$ and $u \in V$, then $(x+y) u=(x y)+(y u)$. On the left is addition in R then action of $x+y \in R$ on $u \in V$. On the right is $x u \in V(x$ acting on $u)$ added (in $V)$ to $y u$. Also, $x\left(u_{1}+u_{2}\right)=x u_{1}+x u_{2}$, etc. If R were a field then this would make V a vector space, but there is more variety in modules than in vector spaces.
(a) Show that if $I \subset R$ is an ideal, addition in I and multiplication by $x \in R$ makes I a module over R.
(b) Show that if $I \subset R$ is an ideal, then R / I is a module in a natural way.
(c) A set $g_{1} \in V, \ldots, g_{n} \in V$ is a set of generators of V (or generates V) if every $u \in V$ may be written as

$$
u=\sum_{j=1}^{m} x_{j} g_{j}, \quad x_{j} \in R
$$

The representation need not be unique and m need not be minimal. Give an example of a module generated by one generator that is not isomorphic to R in the category of modules over R. [Note, this can't happen for vector spaces.]
(d) Give an example of a module $V \subset R$ that cannot be generated by a single generator. Hint: $\mathfrak{p} \subset \mathbb{Z}[i \sqrt{5}]$. [A proper subspace of a vector space requires fewer generators (basis vectors), never more.]
4. Suppose \mathbb{E} / \mathbb{Q} is a finite degree normal extension. An $\alpha \in \mathbb{E}$ is an algebraic integer if $f(\alpha)=0$ where $f \in \mathbb{Z}[x]$ is a monic polynomial (monic means f has leading coefficient 1 , so $f(x)=x^{n}+b_{n-1} x^{n-1}+\cdots$.)
(a) Show that the module over \mathbb{Z}, V, generated by powers of α is finitely generated if α is an algebraic integer. Show that $\alpha V \subset V$.
(b) Suppose $\alpha \in \mathbb{E}$ and $V \subset \mathbb{E}$ is a finitely generated \mathbb{Z} module with $\alpha V \subset V$. Show that α is an algebraic integer. Hint: Write the action of multiplication of α in terms of the generators g_{k} of V and show that α is an eigenvalue of the resulting matrix.
(c) Show that the set of algebraic integers in \mathbb{E} forms a ring. Hint: If g_{k} generate the α module and h_{j} generate the β module, then the elements $g_{k} h_{j}$ generate a module for $\alpha+\beta$ and $\alpha \beta$.
(d) Show that $\mathbb{Z}[i]$ (the Gaussian integers) are the algebraic integers in $\mathbb{Q}[i] / \mathbb{Q}$.
5. The field \mathbb{F} is algebraically closed if any $g \in \mathbb{F}[x]$ splits in \mathbb{F}. A field \mathbb{E} / \mathbb{F} is an algebraic closure of \mathbb{F} if \mathbb{E} is algebraically closed and no proper subfield $\mathbb{B} \subset \mathbb{E}$ that contains \mathbb{F} is algebraically closed. For example, \mathbb{C} is algebraically closed (the "fundamental theorem of algebra") and \mathbb{C} is an algebraic closure of \mathbb{R}. This exercise gives a construction of an algebraic closure of finite or countable fields. The construction for fields that are not countable involves fancier set theory, the axiom of choice in the form of Zorn's lemma. Our version will be enough for our class. It is not hard to prove, but not part of this exercise, that all algebraic closures of \mathbb{F} are isomorphic. We call any one of them "the" algebraic closure.
(a) Suppose $\mathbb{K}_{1} \subset \mathbb{K}_{2} \subset \cdots$ is an infinite sequence of fields. Show that $\overline{\mathbb{K}}$ is a field, where

$$
\overline{\mathbb{K}}=\cup_{n=1}^{\infty} \mathbb{K}_{n}
$$

Assume $\mathbb{K}_{n+1} / \mathbb{K}_{n}$ is a field extension for each n.
(b) Suppose $\mathbb{E} / \mathbb{F} / \mathbb{K}$ is a three element tower of finite index algebraic field extensions. Show that every $\alpha \in \mathbb{E}$ satisfies a polynomial equation $f(\alpha)=0$ where $f \in \mathbb{K}[x]$. This is the main idea behind this exercise.
(c) A set S is countable if it is possible to put the elements into an enumerated list

$$
S=\left\{s_{1}, s_{2}, \ldots\right\}
$$

It's OK to have repeats. For example, the positive rational numbers are countable because you can make the list $\frac{0}{1}, \frac{1}{1}, \frac{0}{2}, \frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \frac{4}{2}, \frac{0}{3}, \cdots$. Show that if \mathbb{K} is a finite or countable field, then the set of polynomials $\mathbb{K}[x]$ is also countable.
(d) Call the list from part (c) $f_{1}(x), f_{2}(x), \cdots$. Let \mathbb{K}_{n+1} be an extension field of \mathbb{K}_{n} where f_{n} splits. Show that each of the polynomials f_{n} splits inthe union $\overline{\mathbb{K}}$.
(e) Suppose $g \in \mathbb{K}_{n}[x]$. Show that g splits in some K_{m} for $m \geq n$.
(f) Suppose $g \in \overline{\mathbb{K}}[x]$. Show that g splits in \mathbb{K}_{n}.
(g) Let $\overline{\mathbb{Q}}$ be "the" algebraic closure of \mathbb{Q}. Show that $\overline{\mathbb{Q}}$ is countable. In particular, \mathbb{C} is not the algebraic closure of \mathbb{Q}.
(h) Show that $\overline{\mathbb{F}_{p}}$ is an infinite field of characteristic p.

