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Always check the classes message board before doing any work on the assignment.

Assignment 14, due May 13

Corrections: fixed due date. May 12: fixed (3b) to say s | 1 instead of s | 0.

1. Let G = S3. Take V = C? spanned by e and e;. Define a representation
pon V as follows. For m € S3, define meg = eg and we; = ey if 7 is an
even permutation, and weg = e; and we; = eg if 7 is an odd permutation.

(a)
(b)

Show that p is irreducible or decompose p into its irreducible subrep-
resentations.

Show that p is the representation induced from the subgroup C3 C S3
from the trivial representation of S3/C3 = Cs.

2. This sequence of exercises repeats the Lie algebra calculation we did in
class for SO(3), but for SU(2). This is the group of 2 x 2 complex matrices
that are unitary g*g = I and have determinant det(g) = 1. The Lie
algebra of the two groups is the same (isomorphic) and the groups are
nearly isomorphic, but not exactly (another interesting but long story).

(a)

A 2 x 2 complex matrix L is in the Lie algebra if there is a smooth
“path” ¢(t) € SU(2) with ¢(0) = I and

d
L= %g(t)

Show that if L is in the Lie algebra, then L is skew hermitian and
trace free

t=0

L*=—L, Tr(L)=0.

Show that this is the same as having real numbers a, b, and ¢ with

. ia b+ic
L= <—b +ic —ia ) ’ (1)
The Lie algebra of SU(2) is written su(2), which may be made in

LaTeX using: “$\frak{su}(2)$”, but I don’t know how to do this
in handwriting without making it hard to distinguish from SU(2).

Define the matrix exponential to be

oo

Show that if L is skew hermitian and trace free, then g € SU(2) “up
to second order”, which means

g (t)gt) =T +0(t), det(g(t) =1+ O(t%) .



()

(extra credit) Show that g(t) € SU(2) exactly. Hint: You can do
it term by term calculating the Taylor series, but that proof is not
interesting enough to be worth your time. If you know about differ-
ential equations, you can prove it by showing that g(¢) is the solution
of the differential equation system

dg
Y_r 0)=1.
o = L9, 900)

Assume the result of part (¢). Show that the Lie algebra of SU(2)
consists of all matrices of the form (1).

Show that if L and M are trace free, then the commutator, [L, M] =
LM — ML is trace free.

Show that if L and M are skew hermitian, then the commutator
is skew hermitian. Show that if L € su(2) and M € su(2), then
[L, M] € su(2).

The Pauli spin matrices are

(01 (0 —i (1 0
9e=\1 0/ %" \i o) %7 \o -1/

Define corresponding elements of he Lie algebra su(2)

1 1 1
Zx:fgx, ly:* lz:;io—z
2ily = 0y, 2ily= oy, 2il,= o,.
Recall the order “x,y,z”, which repeats to “y,z,x” and “z,x,y” (all part

of “x,y,2,x,y,2”). Show that the Pauli matrices satisfy the “famous
Pauli commutation relations”

(05, 0y] = 2io,
loy,0:] = 2i0,
[02,0] = 2ioy .

Conclude that the corresponding elements of su(2) satisfy

[z, 1y
[Ly, 2]
Uzal } =

y =1
z ZZL’
) =1y .
An isomorphism between Lie algebras is a linear map [ A Al=1L

that is one-to-one and onto, and preserves the commutator:

[Al, Am] = A[l,m] .



Show that the Lie algebra su(2) is isomorphic to the Lie algebra of
SO(3), which is so(3).

In class we derived a set of generators of s0(3), which we called L,,
Ly, and L, and corresponded to infinitesimal rotation about the z,
y, and z axes respectively. A rotation by angle ¢ about the z axis has
the effect x — x, and (y, z) — (cos(t)y + sin(t)z, — sin(t)y + cos(t)z).
This action is represented in matrix form by

T T 1 0 0 x
y| — cos(t)y+sin(t)z | = |0  cos(t) sin(t) Y
z —sin(t)y + cos(t)z 0 —sin(t) cos(t) z

This can be written

x T 1 0 0
v) =0 |v] w@=[0 cos@) sine
z z 0 —sin(t) cos(t)

The corresponding generator of the Lie algebra is
0 0 0

L, =—g.(t) =10 0 1

dt 0 -1 0

In class, we calculated L, and L, and verified the commutation re-
lations

8

y L
[Ly’Lz] =L
[LZ,Lw] =L, .

We also calculated the exponential maps (see next exercise) to be
etls = g,(t), with formulas above, and similarly for L, and L.

The exponential map defined in part (b) defines a homomorphism
from the additive group R to G. The image is a one dimensional
subgroup of G. Find the three one dimensional subgroups (formulas
for the matrices as functions of ¢) for the two generators I, and [,.
Here is the answer for [,. First you write the matrix Taylor series
for e*. Then you put in the formula for I, and its powers. Then
you collect the individual matrix elements (entries) as ordinary power
series. Then you identify the functions these power series are Taylor



series for — sines and cosines or exponentials.
t2 t3

9x(t) :I+tlw+gli+gli+'”
O.
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The last step is guessing from the beginning of the Taylor series
above. Therefore, the formula for g,(¢) on the last line is only a
conjecture that needs to be verified by a proof. The proof has four
parts. First, you verify that g,(t) is the image of Rt (the additive
group), which means g, (t; + t2) = g (¢1)g:(t2) (why?). Second, you
check that g,(t) is unitary. Third, you check that det(g.(t) = 1.
Finally, you check that

d

— 9z (t)

=l .
dt

t=0

(j) Show that the isomorphism of Lie algebras from part (h) does not
“lift” to an isomorphism of the corresponding Lie groups. For this,
take [, € su(2) and the corresponding L, = Al, € s0(3). Show that
e?™= = —T in SU(2) but €?"= = [ in SO(3). In other words, a full
rotation in SO(3) corresponds to only a half rotation in SU(2).

3. This sequence of exercises continues Exercise 3 from Assignment 13. Some
of the facts you need for these new exercises come from last week.

(a) Show that if @ # 0 mod ¢ there are numbers gj (which depend on a)

so that
q

2
N [ 1 ifn=amodgq
Oijj(”){o if n # amod q .

<

Assume that x;(n) = 0 if n = 0 mod ¢. Show that bo # 0. This is
the coefficient of the trivial character.

(b) Consider the function

Show that f(s) — oo as s | 1.



(¢) Show that
1
flo)= > =+,
p=a mod q
where g(s) is bounded as s | 1.

(d) Explain how all these exercises fit together to give a proof that there

are infinitely many primes p = a mod ¢. This is a famous theorem
of Dirichlet.



