Honors Algebra II, Courant Institute, Spring 2020
http://www.math.nyu.edu/faculty/goodman/teaching/HonorsAlgebraII2020/HonorsAlgebraII.html
Always check the classes message board before doing any work on the assignment.

Assignment 12, due April 29
Corrections: April 26: Exercise 4 corrected to replace aut G (which is impossible) with aut (N). Exercise 7 made the notation clearer, replacing $\rho(f)$ with $\rho\left(f^{j}\right)$. April 27: Part (a) of Exercise 8 fixed a typo (actually, an editing fail) to replace N by H in one place.

This assignment describes the semi-direct product of groups. This is a foundation for a future discussion of induced representation of semi-direct products, which comes next week (hopefully). It is an opportunity to weave together several different parts of algebra from this semester and last semester.

1. Let G be a group, $H \subset G$ a subgroup, and $N \subset G$ a normal subgroup. Assume that $N H=G$, which means that every $g \in G$ may be written as $g=n h$ for some $n \in N$ and $h \in H$. Assume that $N \cap H=\{i d\}$.
(a) Show that if $g=n h$ with $n \in N$ and $h \in H$, then n and h are unique.
(b) Show that $\left(n_{1} h_{1}\right)\left(n_{2} h_{2}\right)=\left(n_{1} n_{2}^{\prime}\right)\left(h_{1} h_{2}\right)$ with $n_{2}^{\prime}=h_{1} n_{2} h_{1}^{-1}$.
2. The automorphism group of G is the group of isomorphisms of G, under composition. That is, $\rho \in \operatorname{aut}(G)$ means that $\rho: G \rightarrow G$ is a group isomorphism on G. The group operation in $\operatorname{aut}(G)$ is composition, which means $\rho_{1} \rho_{2}=\rho_{1} \circ \rho_{2}$. On the left is the product in the group aut (G). On the right is composition of isomorphisms of G. Show that aut (G) defined like this is a group (associativity, inverses).
3. Describe the group aut $\left(C_{p}\right)$, where C_{p} is the cyclic group of order p and p is prime.
4. Suppose that $N \subset G$ is a normal subgroup and $H \subset G$ is another subgroup, which need not be normal. Consider a map $\rho: H \rightarrow \operatorname{aut}(N)$ defined in the following way. For $h \in H$, let $\rho(h)$ be the automorphism

$$
n \xrightarrow{\rho(h)} h n h^{-1} .
$$

Show that $\rho(h) \in \operatorname{aut}(N)$ for any $h \in H$, and that $h \rightarrow \rho(h)$ is a homomorphism from H to $\operatorname{aut}(N)$.
5. Suppose N and H are groups and $\rho: H \rightarrow \operatorname{aut}(G)$ is a homomorphism as above. Define the operation that takes pairs of pairs to pairs $\left[\left(n_{1}, h_{1}\right),\left(n_{2}, h_{2} 0\right] \rightarrow\right.$ $\left(n_{3}, h_{3}\right)$ defined by $n_{3}=n_{1} \rho\left(h_{1}\right) n_{2}$ and $h_{3}=h_{1} h_{2}$. Here $n_{1} n_{2}$ is group multiplication in N, and $h_{1} h_{2}$ is group multiplication in H, and $\rho(h) n \in N$
is the result of applying the isomorphism $\rho(h)$ to n. We write with a $*$ to look like multiplication

$$
\left(n_{1}, h_{1}\right) *\left(n_{2}, h_{2}\right)=\left(n_{1} \rho\left(h_{1}\right) n_{2}, h_{1} h_{2}\right) .
$$

Show that this $*$ is a group operation (associativity, inverses). The resulting group is the semi-direct product of N with H (also called twisted product) and written

$$
N \rtimes_{\rho} H
$$

Comment: It might seem clearer to express the $*$ operation as a map

$$
(N \times H) \times(N \times H) \longrightarrow N \times H
$$

I didn't use this notation because $N \times H$ here is not the group product of the groups N and H. It is only the set product of the sets N and H, which is $\{(n, h) \mid n \in N, h \in H\}$. The only groups involved in this construction are N, H, and the twisted product $N \rtimes_{\rho} H$.
6. With the definitions of Exercise 1 and Exercise 4, show the following is an isomorphism between $N \rtimes_{\rho} H$ and G :

$$
\begin{array}{cl}
N \rtimes_{\rho} H & \longrightarrow G \\
(n, h) & \mapsto n h .
\end{array}
$$

In this situation (subgroups generating G), the semi-direct product is called inner.
7. Show that the dihedral group D_{n} is the semi-direct product of $N=C_{n}$ with $H=C_{2}$. For $k \in C_{n}$ and $j \in C_{2}$, the semi-direct structure is $\rho\left(f^{j}\right) k=(-1)^{j} k(\bmod n)$. The dihedral group is defined as being generated by a rotation r with $r^{n}=\mathrm{id}$, and a flip $f^{2}=\mathrm{id}$, and the commutation relation $f r f=f r f^{-1}=r^{-1}$.
8. (This longer exercise is a review of Galois theory and gives an example of semi-direct product.) Let K be the splitting field over \mathbb{Q} of $x^{p}=2, p$ being an odd prime. Let $\alpha=2^{\frac{1}{p}} \in \mathbb{R}$ be the real $p-t h$ root of 2 . Let $\omega \in \mathbb{C}$ be a primitive $p-t h$ root of unity. Let G be the Galois group of K over \mathbb{Q}.
(a) Explain the basic Galois facts about the cyclotomic extension $\mathbb{Q}[\omega] / \mathbb{Q}$. Your explanation should cover the following points in whatever order or form you find convenient.

- The elements ω^{j} for $j=0, \ldots, p-2$ are a basis of $\mathbb{Q}[\omega]$ over \mathbb{Q}.
- $\mathbb{Q}[\omega]$ is a normal extension of \mathbb{Q} with Galois group $H=\operatorname{gal}(\mathbb{Q}[\omega] / \mathbb{Q}$ isomorphic to C_{p-1}.
- H is generated by an automorphism of $\mathbb{Q}[\omega] / \mathbb{Q}$ that is determined by $\omega \xrightarrow{\sigma} \omega^{g}$.
- The inverse of this generator is determined by $\omega \xrightarrow{\sigma^{-1}} \omega^{\gamma}$ where $\gamma g=1 \bmod p$.
- The order of the extension $\mathbb{Q}[\omega] / \mathbb{Q}$, as determined by the dimension of $\mathbb{Q}[\omega]$ as a vector space over \mathbb{Q}, or as determined by the order of the Galois group, is the same.
(b) Explain the basic Galois facts about $\mathbb{Q}[\omega, \alpha] / \mathbb{Q}[\omega]$. Your discussion should cover the following points in some way and in some order.
- f splits in $\mathbb{Q}[\omega, \alpha]$.
- There are no intermediate fields between $\mathbb{Q}[\omega, \alpha]$ and $\mathbb{Q}[\omega]$.
- The elements $\omega^{j} \alpha^{k}$, for $j=0, \ldots, p-2$ and $k=0, \ldots, p-1$, form the basis of $\mathbb{Q}[\omega, \alpha]$ over \mathbb{Q}.
- The elements α^{k} form a basis of $\mathbb{Q}[\omega, \alpha]$ over $\mathbb{Q}[\omega]$.
- f is irreducible in $\mathbb{Q}[\omega]$.
- $N=\operatorname{gal}(\mathbb{Q}[\omega, \alpha] / \mathbb{Q}[\omega])$ is cyclic of order p generated by an element τ determined by $\alpha \xrightarrow{\tau} \omega \alpha$.
- $N \subset G$ is a normal subgroup because its fixed field is $\mathbb{Q}[\omega]$, which is a normal extension of \mathbb{Q}.
You may assume that f has no roots in \mathbb{Q} (Proof: if $x=\frac{a}{b}$ is a rational root in "lowest terms" (a and b relatively prime) then 2 divides a, then 2 divides b.) That doesn't necessarily imply that f is irreducible.
(c) Calculate the commutator $\sigma \tau \sigma^{-1}$ as it acts on an element $x \in \mathbb{Q}[\omega, \alpha]$ in the form

$$
x=\sum_{j=0}^{p-2} \sum_{k=0}^{p-1} a_{j k} \omega^{j} \alpha^{k}
$$

with rational coefficients $a_{j k}$. Write formulas for σx and τx, etc. Use this, together with Exercise 3 to describe the homomorphism from H (part (a)) to $\operatorname{aut}(N)$ (of part (b)). Hint: It was easier for me not to write a formula for τx in the form

$$
\sum_{j=0}^{p-2} \sum_{k=0}^{p-1} b_{j k} \omega^{j} \alpha^{k}
$$

Instead, I wrote used expressions of the form

$$
x=\sum_{j k} a_{j k} \omega^{l_{j k}} \alpha^{m_{j k}}
$$

Applying σ and τ just changes the exponents of ω and α, but keeping the fact that the elements form a basis of $\mathbb{Q}[\omega, \alpha]$ over \mathbb{Q}.
(d) (The goal of all this, besides reviewing Galois theory) Express G as a semi-direct product of C_{p} with C_{p-1}.

