Honors Algebra II, Courant Institute, Spring 2020

http://www.math.nyu.edu/faculty/goodman/teaching/HonorsAlgebraII2020/HonorsAlgebraII.html Always check the classes message board before doing any work on the assignment.

Assignment 12, due April 29

Corrections: April 26: Exercise 4 corrected to replace aut G (which is impossible) with aut(N). Exercise 7 made the notation clearer, replacing $\rho(f)$ with $\rho(f^j)$. April 27: Part (a) of Exercise 8 fixed a typo (actually, an editing fail) to replace N by H in one place.

This assignment describes the *semi-direct product* of groups. This is a foundation for a future discussion of induced representation of semi-direct products, which comes next week (hopefully). It is an opportunity to weave together several different parts of algebra from this semester and last semester.

- 1. Let G be a group, $H \subset G$ a subgroup, and $N \subset G$ a normal subgroup. Assume that NH = G, which means that every $g \in G$ may be written as g = nh for some $n \in N$ and $h \in H$. Assume that $N \cap H = \{id\}$.
 - (a) Show that if g = nh with $n \in N$ and $h \in H$, then n and h are unique.
 - (b) Show that $(n_1h_1)(n_2h_2) = (n_1n'_2)(h_1h_2)$ with $n'_2 = h_1n_2h_1^{-1}$.
- 2. The automorphism group of G is the group of isomorphisms of G, under composition. That is, $\rho \in \operatorname{aut}(G)$ means that $\rho: G \to G$ is a group isomorphism on G. The group operation in $\operatorname{aut}(G)$ is composition, which means $\rho_1\rho_2 = \rho_1 \circ \rho_2$. On the left is the product in the group $\operatorname{aut}(G)$. On the right is composition of isomorphisms of G. Show that $\operatorname{aut}(G)$ defined like this is a group (associativity, inverses).
- 3. Describe the group $\operatorname{aut}(C_p)$, where C_p is the cyclic group of order p and p is prime.
- 4. Suppose that $N \subset G$ is a normal subgroup and $H \subset G$ is another subgroup, which need not be normal. Consider a map $\rho: H \to \operatorname{aut}(N)$ defined in the following way. For $h \in H$, let $\rho(h)$ be the automorphism

$$n \xrightarrow{\rho(h)} hnh^{-1}$$

Show that $\rho(h) \in \operatorname{aut}(N)$ for any $h \in H$, and that $h \to \rho(h)$ is a homomorphism from H to $\operatorname{aut}(N)$.

5. Suppose N and H are groups and $\rho: H \to \operatorname{aut}(G)$ is a homomorphism as above. Define the operation that takes pairs of pairs to pairs $[(n_1, h_1), (n_2, h_20] \to (n_3, h_3)$ defined by $n_3 = n_1 \rho(h_1) n_2$ and $h_3 = h_1 h_2$. Here $n_1 n_2$ is group multiplication in N, and $h_1 h_2$ is group multiplication in H, and $\rho(h) n \in N$ is the result of applying the isomorphism $\rho(h)$ to n. We write with a * to look like multiplication

$$(n_1, h_1) * (n_2, h_2) = (n_1 \rho(h_1) n_2, h_1 h_2).$$

Show that this * is a group operation (associativity, inverses). The resulting group is the *semi-direct* product of N with H (also called *twisted* product) and written

$$N \rtimes_{\rho} H$$
.

Comment: It might seem clearer to express the * operation as a map

$$(N \times H) \times (N \times H) \longrightarrow N \times H$$
.

I didn't use this notation because $N \times H$ here is not the group product of the groups N and H. It is only the set product of the sets N and H, which is $\{(n,h) \mid n \in N, h \in H\}$. The only groups involved in this construction are N, H, and the twisted product $N \rtimes_{\rho} H$.

6. With the definitions of Exercise 1 and Exercise 4, show the following is an isomorphism between $N \rtimes_{\rho} H$ and G:

$$\begin{array}{rcl} N \rtimes_{\rho} H & \longrightarrow & G \\ (n,h) & \mapsto & nh \ . \end{array}$$

In this situation (subgroups generating G), the semi-direct product is called *inner*.

- 7. Show that the dihedral group D_n is the semi-direct product of $N = C_n$ with $H = C_2$. For $k \in C_n$ and $j \in C_2$, the semi-direct structure is $\rho(f^j)k = (-1)^j k \pmod{n}$. The dihedral group is defined as being generated by a rotation r with $r^n = id$, and a flip $f^2 = id$, and the commutation relation $frf = frf^{-1} = r^{-1}$.
- (This longer exercise is a review of Galois theory and gives an example of semi-direct product.) Let K be the splitting field over Q of x^p = 2, p being an odd prime. Let α = 2^{1/p} ∈ R be the real p-th root of 2. Let ω ∈ C be a primitive p-th root of unity. Let G be the Galois group of K over Q.
 - (a) Explain the basic Galois facts about the cyclotomic extension Q[ω]/Q. Your explanation should cover the following points in whatever order or form you find convenient.
 - The elements ω^j for $j = 0, \dots, p-2$ are a basis of $\mathbb{Q}[\omega]$ over \mathbb{Q} .
 - $\mathbb{Q}[\omega]$ is a normal extension of \mathbb{Q} with Galois group $H = \operatorname{gal}(\mathbb{Q}[\omega]/\mathbb{Q})$ isomorphic to C_{p-1} .
 - *H* is generated by an automorphism of $\mathbb{Q}[\omega]/\mathbb{Q}$ that is determined by $\omega \xrightarrow{\sigma} \omega^g$.

- The inverse of this generator is determined by $\omega \xrightarrow{\sigma^{-1}} \omega^{\gamma}$ where $\gamma g = 1 \mod p$.
- The order of the extension Q[ω]/Q, as determined by the dimension of Q[ω] as a vector space over Q, or as determined by the order of the Galois group, is the same.
- (b) Explain the basic Galois facts about $\mathbb{Q}[\omega, \alpha]/\mathbb{Q}[\omega]$. Your discussion should cover the following points in some way and in some order.
 - f splits in $\mathbb{Q}[\omega, \alpha]$.
 - There are no intermediate fields between $\mathbb{Q}[\omega, \alpha]$ and $\mathbb{Q}[\omega]$.
 - The elements $\omega^j \alpha^k$, for j = 0, ..., p-2 and k = 0, ..., p-1, form the basis of $\mathbb{Q}[\omega, \alpha]$ over \mathbb{Q} .
 - The elements α^k form a basis of $\mathbb{Q}[\omega, \alpha]$ over $\mathbb{Q}[\omega]$.
 - f is irreducible in $\mathbb{Q}[\omega]$.
 - $N = \operatorname{gal}(\mathbb{Q}[\omega, \alpha]/\mathbb{Q}[\omega])$ is cyclic of order p generated by an element τ determined by $\alpha \xrightarrow{\tau} \omega \alpha$.
 - N ⊂ G is a normal subgroup because its fixed field is Q[ω], which is a normal extension of Q.

You may assume that f has no roots in \mathbb{Q} (Proof: if $x = \frac{a}{b}$ is a rational root in "lowest terms" (a and b relatively prime) then 2 divides a, then 2 divides b.) That doesn't necessarily imply that f is irreducible.

(c) Calculate the commutator $\sigma\tau\sigma^{-1}$ as it acts on an element $x\in\mathbb{Q}[\omega,\alpha]$ in the form

$$x = \sum_{j=0}^{p-2} \sum_{k=0}^{p-1} a_{jk} \omega^j \alpha^k$$

with rational coefficients a_{jk} . Write formulas for σx and τx , etc. Use this, together with Exercise 3 to describe the homomorphism from H (part (a)) to aut(N) (of part (b)). *Hint*: It was easier for me not to write a formula for τx in the form

$$\sum_{j=0}^{p-2} \sum_{k=0}^{p-1} b_{jk} \omega^j \alpha^k$$

Instead, I wrote used expressions of the form

$$x = \sum_{jk} a_{jk} \omega^{l_{jk}} \alpha^{m_{jk}}$$

Applying σ and τ just changes the exponents of ω and α , but keeping the fact that the elements form a basis of $\mathbb{Q}[\omega, \alpha]$ over \mathbb{Q} .

(d) (The goal of all this, besides reviewing Galois theory) Express G as a semi-direct product of C_p with C_{p-1} .