Honors Algebra II, Courant Institute, Spring 2020
http://www.math.nyu.edu/faculty/goodman/teaching/HonorsAlgebraII2020/HonorsAlgebraII.html
Always check the classes message board before doing any work on the assignment.
Assignment 11, due April 20
Corrections: April 13: Exercise 7 replaced with something about representations mod p. April 22 (due date, I'm sorry), Exercise 7 fixed and simplified. The original version was wrong.

The first series of exercises is on Jordan form of a matrix or linear transformation. A Jordan block with eigenvalue λ and size k is a $k \times k$ matrix with λ on the diagonal and 1 on the superdiagonal. Matrix entries just above the main diagonal are in the superdiagonal. An element $a_{k k}$ is on the diagonal, and $a_{k, k+1}$ is in the superdiagonal.

$$
B_{\lambda, k}=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & 0 & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
& & & & 1 \\
0 & \cdots & & 0 & \lambda
\end{array}\right) \quad, \quad(k \times k \text { matrix })
$$

We use $J_{k \times k}$ to denote the matrix with ones on the super-diagonal:

$$
J_{k \times k}=B_{0, k}
$$

This matrix acts on a column vector by shifting the components up:

$$
J_{k \times k} x=J_{k \times k}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k-1} \\
x_{k}
\end{array}\right)=\left(\begin{array}{c}
x_{2} \\
x_{3} \\
\vdots \\
x_{k} \\
0
\end{array}\right) .
$$

The component x_{1} is lost. A zero is "shifted" in as the last component. A Jordan block can be written in terms of the $k \times k$ identity matrix as

$$
\begin{equation*}
B_{\lambda, k}=\lambda I_{k \times k}+J_{k \times k} \tag{1}
\end{equation*}
$$

An $n \times n$ matrix A is in Jordan form (or Jordan normal form, or Jordan canonical form) if it is block diagonal with Jordan blocks on the diagonal. That means that there are "numbers" (elements of a field K) λ_{j} and sizes k_{j} with $n=k_{1}+\cdots+k_{m}$.

$$
A=\left(\begin{array}{cccc}
B_{\lambda_{1}, k_{1}} & 0 & \cdots & 0 \tag{2}\\
0 & B_{\lambda_{2}, k_{2}} & 0 & \vdots \\
\vdots & 0 & \ddots & 0 \\
0 & \cdots & 0 & B_{\lambda_{m}, k_{m}}
\end{array}\right)
$$

The number of blocks is m.
Let V be vector space of dimension n over an algebraically closed field K, with $\rho: V \rightarrow V$ a linear transformation. The Jordan form theorem is that there is a basis of V in which ρ is represented by a matrix in Jordan form. The basis need not be unique and the blocks may be in any order. The eigenvalues λ_{j} and the block sizes k_{j} are uniquely determined by ρ.

The linear transformation is diagonalizable, and the Jordan form (2) is diagonal, if all the blocks have size $k=1$. Otherwise, A has non-trivial Jordan structure. Let $p(\lambda)=\operatorname{det}(\lambda I-A)$ be the characteristic polynomial of A. If p has n distinct roots $\lambda_{1}, \ldots, \lambda_{n}$, then the block sizes are all $k_{j}=1$, because n positive integers k_{j} cannot add up to n unless each is equal to 1 . If $p\left(\lambda_{1}\right)=p^{\prime}\left(\lambda_{1}\right)=0\left(\lambda_{1}\right.$ is not a simple root), then it is likely, but not necessary, that there is non-trivial Jordan structure, $k_{1}>1$, corresponding to that eigenvalue.

1. A linear transformation $\rho: V \rightarrow V$ is nilpotent if there is an m with $\rho^{m}=0$. A nilpotent matrix that is diagonalizable must be the zero matrix. Suppose $\rho \neq 0$ but $\rho^{2}=0$. This exercise shows that ρ has nontrivial Jordan structure and explains how to find a basis in which ρ has Jordan form. The point is to find basis vectors x and y with $\rho x=0$ and $\rho y=x$. The vector y has $\rho y \neq 0$ but $\rho^{2} y=0$. The vector x is an eigenvector of ρ with eigenvalue $\lambda=0$. The vector y is a generalized eigenvector, also associated with eigenvalue $\lambda=0$. For higher powers $m>2$, some Jordan chains will be longer, taking the form

$$
x_{m} \xrightarrow{\rho} \rho x_{m}=x_{m-1} \quad \xrightarrow{\rho} \cdots \quad \xrightarrow{\rho} \quad \rho x_{2}=x_{1} \neq 0 \quad \xrightarrow{\rho} \rho x_{1}=0 .
$$

A chain like this is consistent with $\rho^{m}=0$ but $\rho^{m-1} \neq 0$. The Jordan form theorem for nilpotent matrices says that V has a basis consisting of chains like this. Different chains can have different lengths, but the longest chain has a length equal to the highest power m.
For example, consider the nilpotent matrix

$$
A=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The vectors $e_{3} \rightarrow e_{2} \rightarrow e_{1} \rightarrow 0$ form a chain of length 3 , and the chain $e_{5} \rightarrow e_{4} \rightarrow 0$ has length 2 . This matrix is in Jordan form (2) with a 3×3 block and a 2×2 block, both with eigenvalue 0 . It has $A^{3}=0$ but $A^{2} \neq 0$.
Throughout this exercise, take $m(\rho)$ to be the smallest integer with $\rho^{m}=$ 0 . This has $\rho^{m-1} \neq 0$. Take $n=\operatorname{dim}(V)<\infty$. This exercise finds the Jordan structure of a nilpotent transformation, which is the technical core of the Jordan form theorem. The strategy is to find the "end" vectors, which are true eigenvectors, then to find generalized eigenvectors that
map to these true eigenvectors. Some eigenvectors will be "hit" in this way and others may not be, depending on the Jordan structure. Then we find whatever vectors may map to the first generalized eigenvectors, and so on. The main technical idea is part 1d.
(a) Show that a $\lambda=0$ Jordan block $B_{0, k}$ has $m=k$.
(b) Define $V_{j}=\operatorname{ker}\left(\rho^{j}\right)$ with dimension d_{j}. Show that $V_{j-1} \subset V_{j}$ and that each containment is strict in the sense that $1 \leq d_{1}<d_{2} \cdots<$ $d_{m}=n$. Hint: Show that ρ takes V_{j} onto $V_{j-1} \subseteq V_{j}$. Let ρ_{j} be the restriction of ρ to V_{j}. Show that if $d_{j-1}=d_{j}$ then $V_{j-1}=V_{j}$ and ρ_{j} is an automorphism and not nilpotent.
(c) Show that if $m=1$ then ρ is diagonalizable. (This is trivial but good to remember.)
(d) Suppose $m=2$. Construct a basis of V consisting of three parts. The x_{j}, for $j=1, \ldots, r$, are a basis for $W_{1}=\rho\left(V_{2}\right) \subset V_{1}$. The y_{j}, for $j=1, \ldots, s$, extend the x_{j} so that the x_{j} and y_{j} together are a basis for V_{1}. The z_{j}, for $j=1, \ldots, r$ are chosen arbitrarily so that $\rho\left(z_{j}\right)=x_{j}$. Show that these vectors together form a basis for V. Hint: To see they are linearly independent, consider a linear combination in V of the form

$$
0=\sum_{j=1}^{r} a_{j} x_{j}+\sum_{j=1}^{s} b_{j} y_{j}+\sum_{j=1}^{r} c_{j} z_{j} .
$$

If you apply ρ and use the fact that the x_{j} are linearly independent, you see that the c_{j} must be zero. For any $u \in V_{2}$, you can write $\rho u=\sum c_{j} x_{j}$ (why?) and see that $u-\sum c_{j} z_{j} \in V_{1}$ (why)? [There was an argument like this in our work on noetherian modules. If $N \subset M$ is noetherian and M / N is noetherian, then M is noetherian. We took a finite basis of M / N and chose arbitrary elements in M that map to them.]
(e) Generalize the argument of the above two parts to $m=3$ or higher. You may do just the case $m=3$, since larger m is the same, but with more notation. Show that a 3×3 Jordan block arises from a triple of basis elements $u \xrightarrow{\rho} v \xrightarrow{\rho} w \xrightarrow{\rho} 0$.
(f) Show that for $m=2$, the basis constructed in part (1d) represents ρ with a matrix in Jordan form with $r 2 \times 2$ blocks and $s 1 \times 1$ blocks.
(g) The characteristic polynomial is $p(\lambda)=\operatorname{det}(\lambda I-\rho)$. Show that $p(\lambda)=\lambda^{n}$. This shows that different Jordan structures are compatible with the same characteristic polynomial. Hint: A fancy argument uses the fact that p splits in the algebraic closure of K an that a nilpotent transformation cannot have $\rho x=\lambda x$ with $\lambda \neq 0$. This exercise gives a more elementary yet more complicated proof.
2. Let ρ act on V but do not assume ρ is nilpotent. The nil subspace of V is W_{1}, which is the set of $x \in V$ with $\rho^{j} x=0$ for some $j>0$. We want to write V as a direct sum of subspaces corresponding to different eigenvalues. The nil subspace W_{1} (or generalized eigenvalue subspace) corresponds to eigenvalue $\lambda=0$. The point is that there is a complementary space W_{2} that is also invariant under ρ.
(a) Show that there is an m with $W_{1}=\operatorname{ker}\left(\rho^{m}\right)$. Show that W_{1} is an invariant subspace (stable subspace) under ρ. Define $\rho_{1}: W_{1} \rightarrow W_{1}$ to be the restriction of ρ to W_{1}.
(b) Define $W_{2}=\rho^{m}(V)$. Let ρ_{2} be the restriction of ρ to W_{2}. Show that ρ_{2} is invertible on W_{2} and that W_{2} is an invariant subspace under ρ. Hint: Tricks from part (1d) may apply.
(c) Let x_{1}, \ldots, x_{r} be a basis for W_{1} and y_{1}, \ldots, y_{s} be a basis of W_{2}. Show that x_{1}, \ldots, x_{r} be a basis for W_{1} and y_{1}, \ldots, y_{s} form a basis for V and that $V=W_{1} \oplus W_{2}$ with $\rho=\rho_{1} \oplus \rho_{2}$.
(d) Show that ρ_{1} on W_{1} has a Jordan structure.
3. Show that if λ is a root of the characteristic polynomial, then $\rho-\lambda I$ has a non-trivial nil subspace. Call this subspace V_{λ}. Show that V_{λ} is stable under ρ, that V is a direct sum of such subspaces. Show that you can combine bases of these V_{λ} to find a basis for V in which ρ has the form (2).
4. A chain of generalized eigenvectors for eigenvalue λ is a sequence of nonzero vectors x_{j} so that

$$
x_{j} \xrightarrow{A-\lambda I} x_{j-1} \xrightarrow{A-\lambda I} \cdots \xrightarrow{A-\lambda I} x_{1} \xrightarrow{A-\lambda I} 0 .
$$

Of course, the last vector, x_{1} is a true eigenvector. Show that the basis in which ρ has the Jordan normal form is a basis consisting of generalized and true eigenvectors.
5. Consider the $n \times n$ matrix

$$
A=\left(\begin{array}{cccc}
-a_{n-1} & -a_{n-2} & \cdots & -a_{0} \\
1 & 0 & \cdots & 0 \\
0 & 1 & 0 & \vdots \\
\vdots & 0 & \ddots & \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

Consider the polynomial $p(x)=x^{n}+\cdots+a_{0}$. The matrix A is the companion matrix for p.
(a) Show that if $p(\lambda)=0$, and

$$
x=\left(\begin{array}{c}
\lambda^{n-1} \\
\lambda^{n-2} \\
\vdots \\
1
\end{array}\right),
$$

Then x is an eigenvector of A with eigenvalue λ.
(b) Show that if λ is a double root of $p\left(p(\lambda)=0, p^{\prime}(\lambda)=0\right)$ then

$$
y=\frac{d}{d \lambda} x=\left(\begin{array}{c}
(n-1) \lambda^{n-2} \\
\vdots \\
0
\end{array}\right)
$$

generalized eigenvector with $y \xrightarrow{A-\lambda I} c x \xrightarrow{A-\lambda I} 0$.
6. Suppose G is an infinite group and $\rho: G \rightarrow \operatorname{aut}(V)$ is a finite dimensional representation. Here, aut (V) is the group of linear automorphisms (invertible linear maps) of V. The representation is simple if there is no proper invariant subspace $W \subset V$ so that $\rho(g): W \rightarrow W$ for all $g \in G$. The representation is semi-simple if it is a direct sum of simple representations. Theorem 2 of Linear Representations of Finite Groups states that any representation of a finite group on a vector space over \mathbb{C} is semi-simple. Take $G=\mathbb{Z}$, let A be an $n \times n$ non-singular matrix.
(a) Show that $n \rightarrow A^{n}$ defines a linear representation of \mathbb{Z} on $V=\mathbb{C}^{n}$. The representation may be denoted (with a slight abuse of notation) by $\rho_{A}(n)=A^{n}$.
(b) Show that ρ_{A} is semi-simple if and only if A is disgonalizable over \mathbb{C} (non-trivial Jordan block \Longrightarrow not semi-simple).
(c) Give an example of a real matrix A that defines a real (not complex) representation ρ_{A} over \mathbb{R}^{n} that is semi-simple but A is not diagonalizable (over \mathbb{R}).
(d) (extra credit) Suppose A and B are invertible commuting $n \times n$ matrices. Show that $\rho_{A B}:(m, n) \rightarrow B^{m} A^{n}$ defines a representation of \mathbb{Z}^{2} on \mathbb{C}^{n}.
(e) (extra credit) Show that this representation is semi-simple if and only if A and B are simultaneously diagonalizable over \mathbb{C}. This means that there is a single invertible $n \times n$ complex matrix P so that $P^{-1} A B$ and $P^{-1} B P$ are both diagonal.
7. Consider the 2 dimensional representation ρ with representation space $V=\mathbb{F}_{p}^{2}$ over the finite field \mathbb{F}_{p}. The group is the cyclic group $G=$ $C_{p}=\{0,1, \ldots, p-1\}$. For 1 the generator of C_{p}, the representation $\rho(1)$ acts on (x, y) by $y \rightarrow y$ and $x \rightarrow x+y$. This exercise shows that this finite dimensional representation of a finite group is not semi-simple. It's basically a Jordan block for eigenvalue $\lambda=1$.
(a) Show that for any pair of communing matrices the binomial formula holds and identify the precise upper and lower limits for the summation:

$$
\begin{equation*}
(B+C)^{k}=\sum_{j}\binom{k}{j} B^{j} C^{k-j} \tag{3}
\end{equation*}
$$

(b) Identify the matrix $A(1)$ that represents $\rho(1)$ in the basis $e_{1}=\binom{1}{0}$ and $e_{2}=\binom{0}{1}$, so $(x, y)=x e_{1}+y e_{2}$. Write $A(1)$ in the form $I+J$ of (1). Use the binomial formula (3) to calculate $A(k) \in \operatorname{aut}\left(\mathbb{F}_{p}^{2}\right)$. Show that $k \in C_{p}$ the map $k \rightarrow A^{k}$ is well defined and is a representation of C_{p}. Hint: The calculation is related to the calculation that shows $(x+y)^{p}=x^{p}+y^{p}$ in \mathbb{F}_{p}.
(c) Verify (along with the precise start and end values in the sum) the formula

$$
A^{k}=\sum_{j}\binom{k}{j} \lambda^{j} J^{k-j}
$$

(d) Show that the subspace $W \subset V$ generated by e_{2} is invariant under ρ.
(e) Show that there is no other one dimensional subspace W^{\prime} that is invariant under ρ. Hint: If W^{\prime} is generated by $u \in \mathbb{F}_{p}^{2}$, then $\rho(1) u=$ $c u$ for some $c \in \mathbb{F}_{p}$ (why?). Check whether this is possible with $u=\binom{x}{y}$ with $x \neq 0$.
(f) (extra credit) Let $V_{R}=\mathbb{F}_{p}^{p}$ be the representation space for the regular representation of C_{p} over \mathbb{F}_{p}. Show that V_{R} is semi-simple. Hint: Look for p one dimensional representations and show they all are direct summands in V_{R}.
(g) (more extra credit) We saw that over \mathbb{C} every basic representation has an isomorphic copy inside the regular representation. This exercise shows that is not always true over other fields. Show that the two dimensional representation above does not have an isomorphic copy inside of V_{R}. Hint: You know where e_{2} would have to go, but what about e_{1} ?

