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Always check the classes message board before doing any work on the assignment.

Assignment 11, due April 20

Corrections: April 13: Exercise 7 replaced with something about representa-
tions mod p. April 22 (due date, I’m sorry), Exercise 7 fixed and simplified.
The original version was wrong.

The first series of exercises is on Jordan form of a matrix or linear trans-
formation. A Jordan block with eigenvalue λ and size k is a k × k matrix with
λ on the diagonal and 1 on the superdiagonal. Matrix entries just above the
main diagonal are in the superdiagonal. An element akk is on the diagonal, and
ak,k+1 is in the superdiagonal.

Bλ,k =



λ 1 0 · · · 0

0 λ 1 0
...

...
. . .

. . . 0
1

0 · · · 0 λ

 , (k × k matrix).

We use Jk×k to denote the matrix with ones on the super-diagonal:

Jk×k = B0,k .

This matrix acts on a column vector by shifting the components up:

Jk×k x = Jk×k


x1
x2
...

xk−1
xk

 =


x2
x3
...
xk
0

 .

The component x1 is lost. A zero is “shifted” in as the last component. A
Jordan block can be written in terms of the k × k identity matrix as

Bλ,k = λIk×k + Jk×k . (1)

An n×n matrix A is in Jordan form (or Jordan normal form, or Jordan canonical
form) if it is block diagonal with Jordan blocks on the diagonal. That means that
there are “numbers” (elements of a fieldK) λj and sizes kj with n = k1+· · ·+km.

A =


Bλ1,k1 0 · · · 0

0 Bλ2,k2 0
...

... 0
. . . 0

0 · · · 0 Bλm,km

 . (2)
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The number of blocks is m.
Let V be vector space of dimension n over an algebraically closed field K,

with ρ : V → V a linear transformation. The Jordan form theorem is that there
is a basis of V in which ρ is represented by a matrix in Jordan form. The basis
need not be unique and the blocks may be in any order. The eigenvalues λj and
the block sizes kj are uniquely determined by ρ.

The linear transformation is diagonalizable, and the Jordan form (2) is di-
agonal, if all the blocks have size k = 1. Otherwise, A has non-trivial Jordan
structure. Let p(λ) = det(λI−A) be the characteristic polynomial of A. If p has
n distinct roots λ1, . . . , λn, then the block sizes are all kj = 1, because n positive
integers kj cannot add up to n unless each is equal to 1. If p(λ1) = p′(λ1) = 0 (λ1
is not a simple root), then it is likely, but not necessary, that there is non-trivial
Jordan structure, k1 > 1, corresponding to that eigenvalue.

1. A linear transformation ρ : V → V is nilpotent if there is an m with
ρm = 0. A nilpotent matrix that is diagonalizable must be the zero
matrix. Suppose ρ 6= 0 but ρ2 = 0. This exercise shows that ρ has non-
trivial Jordan structure and explains how to find a basis in which ρ has
Jordan form. The point is to find basis vectors x and y with ρx = 0
and ρy = x. The vector y has ρy 6= 0 but ρ2y = 0. The vector x is
an eigenvector of ρ with eigenvalue λ = 0. The vector y is a generalized
eigenvector, also associated with eigenvalue λ = 0. For higher powers
m > 2, some Jordan chains will be longer, taking the form

xm
ρ−→ ρxm = xm−1

ρ−→ · · · ρ−→ ρx2 = x1 6= 0
ρ−→ ρx1 = 0 .

A chain like this is consistent with ρm = 0 but ρm−1 6= 0. The Jordan
form theorem for nilpotent matrices says that V has a basis consisting of
chains like this. Different chains can have different lengths, but the longest
chain has a length equal to the highest power m.

For example, consider the nilpotent matrix

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0


The vectors e3 → e2 → e1 → 0 form a chain of length 3, and the chain
e5 → e4 → 0 has length 2. This matrix is in Jordan form (2) with a 3× 3
block and a 2×2 block, both with eigenvalue 0. It has A3 = 0 but A2 6= 0.

Throughout this exercise, take m(ρ) to be the smallest integer with ρm =
0. This has ρm−1 6= 0. Take n = dim(V ) < ∞. This exercise finds the
Jordan structure of a nilpotent transformation, which is the technical core
of the Jordan form theorem. The strategy is to find the “end” vectors,
which are true eigenvectors, then to find generalized eigenvectors that
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map to these true eigenvectors. Some eigenvectors will be “hit” in this
way and others may not be, depending on the Jordan structure. Then we
find whatever vectors may map to the first generalized eigenvectors, and
so on. The main technical idea is part 1d.

(a) Show that a λ = 0 Jordan block B0,k has m = k.

(b) Define Vj = ker(ρj) with dimension dj . Show that Vj−1 ⊂ Vj and
that each containment is strict in the sense that 1 ≤ d1 < d2 · · · <
dm = n. Hint: Show that ρ takes Vj onto Vj−1 ⊆ Vj . Let ρj be the
restriction of ρ to Vj . Show that if dj−1 = dj then Vj−1 = Vj and ρj
is an automorphism and not nilpotent.

(c) Show that if m = 1 then ρ is diagonalizable. (This is trivial but good
to remember.)

(d) Suppose m = 2. Construct a basis of V consisting of three parts.
The xj , for j = 1, . . . , r, are a basis for W1 = ρ(V2) ⊂ V1. The
yj , for j = 1, . . . , s, extend the xj so that the xj and yj together
are a basis for V1. The zj , for j = 1, . . . , r are chosen arbitrarily
so that ρ(zj) = xj . Show that these vectors together form a basis
for V . Hint: To see they are linearly independent, consider a linear
combination in V of the form

0 =

r∑
j=1

ajxj +

s∑
j=1

bjyj +

r∑
j=1

cjzj .

If you apply ρ and use the fact that the xj are linearly independent,
you see that the cj must be zero. For any u ∈ V2, you can write
ρu =

∑
cjxj (why?) and see that u −

∑
cjzj ∈ V1 (why)? [There

was an argument like this in our work on noetherian modules. If
N ⊂M is noetherian and M/N is noetherian, then M is noetherian.
We took a finite basis of M/N and chose arbitrary elements in M
that map to them.]

(e) Generalize the argument of the above two parts to m = 3 or higher.
You may do just the case m = 3, since larger m is the same, but with
more notation. Show that a 3 × 3 Jordan block arises from a triple

of basis elements u
ρ→ v

ρ→ w
ρ→ 0.

(f) Show that for m = 2, the basis constructed in part (1d) represents ρ
with a matrix in Jordan form with r 2× 2 blocks and s 1× 1 blocks.

(g) The characteristic polynomial is p(λ) = det(λI − ρ). Show that
p(λ) = λn. This shows that different Jordan structures are compati-
ble with the same characteristic polynomial. Hint: A fancy argument
uses the fact that p splits in the algebraic closure of K an that a nilpo-
tent transformation cannot have ρx = λx with λ 6= 0. This exercise
gives a more elementary yet more complicated proof.
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2. Let ρ act on V but do not assume ρ is nilpotent. The nil subspace of V is
W1, which is the set of x ∈ V with ρjx = 0 for some j > 0. We want to
write V as a direct sum of subspaces corresponding to different eigenvalues.
The nil subspace W1 (or generalized eigenvalue subspace) corresponds to
eigenvalue λ = 0. The point is that there is a complementary space W2

that is also invariant under ρ.

(a) Show that there is an m with W1 = ker(ρm). Show that W1 is an
invariant subspace (stable subspace) under ρ. Define ρ1 : W1 → W1

to be the restriction of ρ to W1.

(b) Define W2 = ρm(V ). Let ρ2 be the restriction of ρ to W2. Show that
ρ2 is invertible on W2 and that W2 is an invariant subspace under ρ.
Hint: Tricks from part (1d) may apply.

(c) Let x1, . . . , xr be a basis for W1 and y1, . . . , ys be a basis of W2. Show
that x1, . . . , xr be a basis for W1 and y1, . . . , ys form a basis for V
and that V = W1 ⊕W2 with ρ = ρ1 ⊕ ρ2.

(d) Show that ρ1 on W1 has a Jordan structure.

3. Show that if λ is a root of the characteristic polynomial, then ρ− λI has
a non-trivial nil subspace. Call this subspace Vλ. Show that Vλ is stable
under ρ, that V is a direct sum of such subspaces. Show that you can
combine bases of these Vλ to find a basis for V in which ρ has the form
(2).

4. A chain of generalized eigenvectors for eigenvalue λ is a sequence of non-
zero vectors xj so that

xj
A−λI→ xj−1

A−λI→ · · · A−λI→ x1
A−λI→ 0 .

Of course, the last vector, x1 is a true eigenvector. Show that the basis
in which ρ has the Jordan normal form is a basis consisting of generalized
and true eigenvectors.

5. Consider the n× n matrix

A =



−an−1 −an−2 · · · −a0
1 0 · · · 0

0 1 0
...

... 0
. . .

0 0 · · · 1 0

 .

Consider the polynomial p(x) = xn + · · · + a0. The matrix A is the
companion matrix for p.
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(a) Show that if p(λ) = 0, and

x =


λn−1

λn−2

...
1

 ,

Then x is an eigenvector of A with eigenvalue λ.

(b) Show that if λ is a double root of p (p(λ) = 0, p′(λ) = 0) then

y =
d

dλ
x =

(n− 1)λn−2

...
0

 ,

generalized eigenvector with y
A−λI→ cx

A−λI→ 0.

6. Suppose G is an infinite group and ρ : G→ aut(V ) is a finite dimensional
representation. Here, aut(V ) is the group of linear automorphisms (invert-
ible linear maps) of V . The representation is simple if there is no proper
invariant subspace W ⊂ V so that ρ(g) : W → W for all g ∈ G. The rep-
resentation is semi-simple if it is a direct sum of simple representations.
Theorem 2 of Linear Representations of Finite Groups states that any
representation of a finite group on a vector space over C is semi-simple.
Take G = Z, let A be an n× n non-singular matrix.

(a) Show that n → An defines a linear representation of Z on V = Cn.
The representation may be denoted (with a slight abuse of notation)
by ρA(n) = An.

(b) Show that ρA is semi-simple if and only if A is disgonalizable over C
(non-trivial Jordan block =⇒ not semi-simple).

(c) Give an example of a real matrix A that defines a real (not complex)
representation ρA over Rn that is semi-simple but A is not diagonal-
izable (over R).

(d) (extra credit) Suppose A and B are invertible commuting n× n ma-
trices. Show that ρAB : (m,n) → BmAn defines a representation of
Z2 on Cn.

(e) (extra credit) Show that this representation is semi-simple if and only
if A and B are simultaneously diagonalizable over C. This means that
there is a single invertible n × n complex matrix P so that P−1AB
and P−1BP are both diagonal.

7. Consider the 2 dimensional representation ρ with representation space
V = F2

p over the finite field Fp. The group is the cyclic group G =
Cp = {0, 1, . . . , p− 1}. For 1 the generator of Cp, the representation ρ(1)
acts on (x, y) by y → y and x → x + y. This exercise shows that this
finite dimensional representation of a finite group is not semi-simple. It’s
basically a Jordan block for eigenvalue λ = 1.
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(a) Show that for any pair of communing matrices the binomial formula
holds and identify the precise upper and lower limits for the summa-
tion:

(B + C)k =
∑
j

(
k

j

)
BjCk−j . (3)

(b) Identify the matrix A(1) that represents ρ(1) in the basis e1 =

(
1
0

)
and e2 =

(
0
1

)
, so (x, y) = xe1 +ye2. Write A(1) in the form I+J of

(1). Use the binomial formula (3) to calculate A(k) ∈ aut
(
F2
p

)
. Show

that k ∈ Cp the map k → Ak is well defined and is a representation
of Cp. Hint: The calculation is related to the calculation that shows
(x+ y)p = xp + yp in Fp.

(c) Verify (along with the precise start and end values in the sum) the
formula

Ak =
∑
j

(
k

j

)
λjJk−j .

(d) Show that the subspace W ⊂ V generated by e2 is invariant under
ρ.

(e) Show that there is no other one dimensional subspace W ′ that is
invariant under ρ. Hint: If W ′ is generated by u ∈ F2

p, then ρ(1)u =
cu for some c ∈ Fp (why?). Check whether this is possible with

u =

(
x
y

)
with x 6= 0.

(f) (extra credit) Let VR = Fpp be the representation space for the regular
representation of Cp over Fp. Show that VR is semi-simple. Hint:
Look for p one dimensional representations and show they all are
direct summands in VR.

(g) (more extra credit) We saw that over C every basic representation has
an isomorphic copy inside the regular representation. This exercise
shows that is not always true over other fields. Show that the two
dimensional representation above does not have an isomorphic copy
inside of VR. Hint: You know where e2 would have to go, but what
about e1?
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