
Honors Algebra II, Courant Institute, Spring 2020

http://www.math.nyu.edu/faculty/goodman/teaching/HonorsAlgebraII2020/HonorsAlgebraII.html

Always check the classes message board before doing any work on the assignment.

Assignment 10, due April 15

Corrections: Due date moved to Wednesday, Exercise 4 removed.

1. Let Cn be the cyclic group of order n with elements {0, 1, . . . , n− 1}. The
group operation is addition mod n. Show that for each α ∈ {0, . . . , n− 1}
there is a two dimensional representation over R given by rigid rotations
in the plane:

k → ρα(k) =

(
cos
(
2παk
n

)
sin
(
2παk
n

)
− sin

(
2παk
n

)
cos
(
2παk
n

) ) .

(a) Verify that the ρα are linear representations of Cn over R and over
C.

(b) Show that ρα is irreducible over R if α 6= 0.

(c) Determine the relation between α and β that is equivalent to ρα being
isomorphic to ρβ .

(d) Express the complex representation space as a direct sum of sub-
spaces invariant under ρα. That is, find one dimensional subspaces
W+ ⊂ C2 and W− ⊂ C2 that are invariant under the action of
ρα. Show that the characters of these irreducible representations are
χ±ρα(k) = e±

2πiαk
n

2. Construct a 4 dimensional representation of C8 over Q as follows. Define
the 2× 2 rational matrix

a =

(
0 1

2
1 0

)
.

Define the 4 × 4 rational matrix as a 2 × 2 block matrix (a matrix whose
entries are matrices)

A =

(
a a
−a a

)
=


0 1

2 0 1
2

1 0 1 0
0 − 1

2 0 1
2

−1 0 1 0

 =


0 1

2 0 1
2

1 0 1 0
0 − 1

2 0 1
2

−1 0 1 0

 .

(a) Show that Ak = I if and only if k ≡ 0 mod 8. Hint: First calculate
a2. Then use the 2× 2 block matrix form of A, not the 4× 4 element
form, to calculate A2 in block matrix form. Compute A4 as the
square of A2. You will see what all the powers of A are.
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(b) Show that ρQ(k) = Ak is a representation of C8 over Q in V = Q4.

(c) Show that ρQ is irreducible over Q. Hint: no 1× 1 or 2× 2 or 3× 3
rational matrix can have (complex) eigenvalues consistent with part
(a).

(d) (extra credit) Consider ρQ as a real representation in V = R4. Show
that V = W 1 ⊕W 2, where ρQ over R, where W 1 and W 2 are repre-
sentations of the kind introduced in exercise 1, with n = 8.

[Explanation: The representation ρQ was constructed with part (d)
in mind. With n = 8, exercise 1 uses the rotation matrix by angle π

4 ,
which is

b =

(
1√
2

1√
2

− 1√
2

1√
2

)
.

The formula for A has this form with a instead of 1√
2
. The matrix a

is a 2×2 rational matrix that “acts like” ± 1√
2

in that the eigenvalues

are ± 1√
2
.]

3. In the notation of Linear Representations of Finite Groups, page 20. Let v1
and v2 be the basis for the 2D representation space for the representation
of S3 with character θ:

v1 =

 1
−1

0

 , v2 =

 1
0
−1

 .

The representation space is V ⊂ C3 with x1 +x2 +x3 = 0. A permutation
π ∈ S3 acts on x ∈ C3 by permuting the components:

ρπ

x1x2
x3

 =

xπ(1)xπ(2)
xπ(3)

 .

The notation is (1, 2, 3)
π−→ (π(1), π(2), π(3)). Let C be the cyclic permu-

tation (1, 2, 3)
C−→ (2, 3, 1).

(a) Find the 2×2 matrix rC that represents ρC in the v1, v2 basis. Verify
directly that Tr(rc) = −1.

(b) Find the one dimensional subspaces W ⊂ V that are invariant under
the cyclic subgroup of S3 generated by C. Show that this is the same
as finding vectors z ∈ V so that rCz = αz. Find two such vectors,
linearly independent.

(c) Verify directly without using character theory that this two dimen-
sional representation is irreducible. Do this by showing that there
is no one dimensional invariant subspace. That means, there is no
y ∈ V with rCy = αy and rT y = βy. Here, rT is the 2 × 2 matrix
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corresponding to the transposition (1, 2, 3)
T−→ (2, 1, 3). You can do

this directly, or showing that the subspaces W from part (b) are not
invariant under T .

4. (Removed)

5. (Preparation for exercise 6) Let f(y) be a twice differentiable real function
of n real variables y1, . . . , yn. Let Q by an n×n matrix and define g(x) =
f(Qx).

(a) Find a formula for ∂xjg in terms of the derivatives ∂ykf and the
entries of Q.

(b) Let a = (a1, . . . , xn)t be an n−component real column vector. Define
row vectors ∇f = (∂y1f, . . . , ∂ynf). The directional derivative of f in
the direction a is the matrix product of the row vector and column
vector, written in various ways

∇f · a =

n∑
j=1

aj∂yjf = (a · ∇) f = a · grad f .

Let ∇g = (∂x1g, . . . , ∂xng). Show that ∇g · b = ∇f · a for some
column vector b and find a matrix/vector formula involving Q that
relates b and a. Hint: One way is to use ordinary partial derivatives
and the chain rule, then interpret the result in terms of matrix and
vector operations.

(c) The matrix of second partial derivatives of f , often called the Hessian
matrix, is

D2f =


∂2y1f ∂y1∂y2f · · · ∂y1∂ynf

∂y1∂y2f ∂2y1f ∂y1∂ynf
...

. . .
...

∂y1∂ynf ∂2ynf


Suppose R is a symmetric n×n matrix. Define (in various notations,
note Rjk = Rkj)

R ::D2f = Tr(RD2f) =

n∑
j=1

n∑
k=1

Rjk ∂yj∂ykf .

Show that R ::D2f = S ::D2g and find a formula involving Q that
relates R to S.

6. Group representations are used in physics and chemistry to understand
functions or motions that respect certain groups of symmetries. A point
group of symmetries is a group that represents rigid rotations about a fixed
point. Mathematically, a rigid rotation is represented by an orthogonal
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matrix, Q. A real n×n matrix Q is orthogonal if QQt = I. Geometrically,
Q being orthogonal means that it does not change the length of vectors
or the angles between vectors. If y = Ax, then ‖y‖2 = ‖x‖2. If v = Qu,
then 〈v, y〉 = vty = 〈utx〉 = utx.

(a) Check that the set of orthogonal n×n matrices forms a group. This
is called the orthogonal group and written On, or O(n), or O(n,R).
Show that if Q ∈ On, then det(Q) = ±1. The subset of On with
det(Q) = 1 is the special orthogonal group, written SOn.

(b) Let Fd be the set of homogeneous polynomials of degree d in n
variables (“F” is because homogeneous polynomials are often called
“forms”). Show that On acts on Fd and that this is a linear repre-
sentation of On. Let GL(Fd) be the group of linear transformations
on Fd. For Q ∈ On, define ρ(Q) ∈ GL(Fd) as follows. If f ∈ Fd, then
g = ρ(Q)f is defined by g(x) = f(Qx).

(c) An operator is a linear map: function → function. The Laplace
operator (or laplacian) 4 is defined by

4f(x) = I ::D2f = Tr(D2f) =

n∑
j=1

∂2xjf(x) .

For example, in 2D,

4f(x, y) =
(
∂2x + ∂2y

)
f(x, y) .

A function f is harmonic if 4f = 0. Let Hd be the set of f ∈ Fd
that are harmonic. Show that On acts on Hd as a sub-representation.
Hint: This is a fancy way to say that if f(x) is harmonic, then f(Qx)
is harmonic. You can start by exploring the example n = 2 and
d = 2, and f(x, y) = x2 − y2. A Q ∈ SO2 has the form

Q =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.

Calculate g(x, y) = ρ(Q)(x2 − y2) and check directly that it is har-
monic.

(d) Find the dimension of and a basis for Hd in two dimensions. Show
that you may take as a basis Re ((x+ iy)n) and Im ((x+ iy)n). Hint:
There may be an elegant way to do this, but a “hands on” or “direct”
method is to say if f has xn then it must have xn−2y2 with a certain
coefficient, and so on.

(e) Find the dimension and a basis for Hd when n = 3 for d = 0, 1, 2.
Show that F2 = H2 ⊕ r2H0, where r2 = (x2 + y2 + z2).
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(f) (extra credit) Find the dimension and a basis for H3 for d = 3. Show
that F3 = H3⊕r2H1. Before you start, be aware that the dimensions
are 10 = 7 + 3. See the comments below for more information.

Comments: A point on the unit sphere will be called ω = x
‖x‖2

.

Any f ∈ Fd may be written f(x) = f̃(ω)rn, where r = ‖x‖2. If

f is harmonic, the corresponding f̃ is a spherical harmonic. In 3D,
dim(Hd) = 2d + 1, which is 3 (with basis x, y, z) for linear polyno-
mials, d = 5 for quadratic polynomials, and so on. In any dimen-
sion there is a direct sum representation Fn = Hn ⊕ r2Hn−2. That
means that for f a homogeneous polynomial of degree n, there is
a harmonic polynomial h of degree n and a homogeneous polyno-
mial g of degree n − 2 so that f(x) = h(x) + ‖x‖22 g(x). Note that

‖x‖22 g(x) = (x21+ · · ·+x2n)g(x) is a homogenous polynomial of degree
n. If you like combinatorics, you can see that

dim(Fd) =

(
n+ d

n

)
.

For dimension n = 3, (if you like doing algebra) this confirms that
dim(Hd) = dim(Fd) − dim(Fd−2) = 2d + 1. The spaces of spher-
ical harmonics, Hd, turn out to be the irreducible representations
of SOn. The representation Fn has decomposition into irreducible
representations Fd = Hd ⊕Hd−2 ⊕ · · · .

7. (extra credit) Let R be a ring without zero divisors (an integral domain,
or just domain). Let K be the field of fractions. Let M ⊂ K be a module
over R. Such a module is a fractional ideal if there is an a ∈ R so that
aM ⊆ R. The ring R is considered a fractional ideal. If M1 and M2 are
fractional ideals, their product is the set of finite sums from M and N .
The number of terms (the range of j in the sum below) is arbitrary, but
finite.

M1 ·M2 =

∑
j

xjyj

∣∣∣ xj ∈M1 , yj ∈M2

 .

(a) Show that if M ⊆ R and M is a fractional ideal, then M is an ideal.
The “improper” ideal M = R is considered an ideal for this purpose.

(b) Show that the the product of fractional ideals is a fractional ideal.

(c) Show that if M1 ⊆ R and M2 ⊆ R, then M1 ·M2 ⊆ R. The product
of ordinary ideals is an ordinary ideal.

(d) Show that fractional ideal multiplication is associative:

(M1 ·M2) ·M3 = M1 · (M2 ·M3) .

Show M = R is the identity element for ideal multiplication. Do not
show that fractional ideals form a group (for fractional ideal M1 there
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is another fractional ideal M2 with M1 ·M2 = R). That’s harder and
isn’t always true in this generality. It requires more hypotheses.

(e) For any c ∈ K, show that the principal fractional ideal (c) = {ca|a ∈ R}
is a fractional ideal and that multiplication of principal fractional ide-
als corresponds to ordinary multiplication in R: (c)·(d) = (cd). Show
that (c)M = {cx | x ∈M}.

(f) For R = Z and K = Q, show that there is a natural 1−1 corre-
spondence between fractional ideals and fractions (rational numbers)
c ∈ Q. Every fractional ideal is principal.

(g) Give an example of a submodule M ⊂ Q that is not a fractional ideal
over Z.
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