Proof: Recall that μ^* has compact support and $H(\mu^*) = E^V < \infty$. Suppose $\tilde{\mu} \in M_1(\mathbb{R})$ has compact support and $H(\tilde{\mu}) < \infty$. Then writing

$$\mu_t = t \tilde{\mu} + (1-t) \mu^* = \mu^* + t(\tilde{\mu} - \mu^*) \in M_1(\mathbb{R}), 0 \leq t \leq 1,$$

we have

$$(15.2.1) \quad H(\mu_t) = \int \log |x-y| \, q^{eq}(x) \, q^{eq}(y) + \int V(x) \, q^{eq}(x)$$

$$+ 2t \int \log |x-y| \, q^{eq}(x) \, d(\mu - \mu^*) \, (x)$$

$$+ t \int V(x) \, d(\mu - \mu^*) \, (x)$$

$$+ t^2 \int \log |x-y| \, q^{eq}(x) \, d(\mu - \mu^*) \, (x) \, d(\tilde{\mu} - \mu^*) \, (y).$$

All these steps are justified as μ^*, $\tilde{\mu}$ have compact support and $H(\mu^*), H(\tilde{\mu}) < \infty$.

As $H(\mu_t) > H(\mu^*), 0 < t < 1$, it is clear that necessary that

$$\int \left[2 \int \log |x-y| \, q^{eq}(x) + V(x) \right] d(\tilde{\mu} - \mu^*) \, (x) = 0.$$
(153.1) \[\int [2 \int_{y_1}^{y_2} q_u(x, y) + U(x)] q_u(x) \; dx \geq \epsilon \]

where

\[\epsilon = \int [2 \int_{y_1}^{y_2} q_u(y) + U(x)] u^d(x) \]

This proves (i).

Let

\[B = \{ x : \epsilon \int_{y_1}^{y_2} q_u(y) + U(x) < \epsilon \} \]

Clearly, \(B \) is a bounded set as \(\frac{V(x)}{\log(x+1)} \)

as \(x \to 0^+ \). Now suppose \(\tilde{\mu}(B) > 0 \) and set

(153.3) \[\tilde{\mu}_B = \frac{x_B \tilde{\mu}}{\tilde{\mu}(B)} \]

where \(x_B \) is the characteristic function of the set \(B \). Then \(\tilde{\mu}_B \in M_1(\mathbb{R}) \) and when compact support, \(\tilde{\mu}_B \in M_1(\mathbb{R}) \) and when compact support, and \(H(\tilde{\mu}_B) < \infty \) (why?). Inserting \(\tilde{\mu}_B \)

into (153.1) we find
\[
\lambda \leq \int \left[2 \int \log(x-\eta^{-1}) \phi_{\mu^0}(u) + V(x) \right] \frac{\nu_B(x)}{\delta^a(x)} \, dx < \infty
\]

which is a contradiction. Hence

\[(154.1) \quad \tilde{\mu}(B) = \tilde{\mu} \left(\{ x : 2 \int \log(x-\eta^{-1}) \phi_{\mu^0}(u) + V(x) < \epsilon \} \right) = 0
\]

for all measures \(\tilde{\mu} \) with compact support and \(H(\tilde{\mu}) < \infty \), and in particular for \(\tilde{\mu} = \mu^{eq} \).

But from (153.2)

\[
0 = \int \left[2 \int \log(x-\eta^{-1}) \phi_{\mu^0}(u) + V(x_1-x) \right] \phi_{\mu^{eq}}(x)
\]

Any (154.1), and so \(\alpha \) follows.

Conversely, suppose \(\mu \in M_{1,1}(\Omega) \), satisfies \(\alpha(i + \alpha) \) and

\[H(\mu) < \infty \]

and \(\mu \) has compact support. Then write

\[\mu^{eq} = \mu + (\mu_{\mu} - \mu) \]

As in (152.1), we find

\[H(\mu) \geq H(\mu^{eq}) \]

\[= H(\mu) + \int \left[2 \int \log(x-\eta^{-1}) \phi_{\mu^0}(u) + V(x_1) \right] \phi_{\mu^{eq}-\mu}(x)
\]

\[+ \int \log(x-\eta^{-1}) \phi_{\mu^{eq}-\mu}(x) \phi_{\mu^{eq}-\mu}(x) \]
By (i) and (ii) the second term reduces to
\[
\sqrt{2 \log (1 - x_1 \Phi(1) + u(1)))} \rho \equiv -\ell
\]
\[\geq \ell - \ell = 0\]

But the third term is strictly positive (see (126.11))

unless \(m^\equiv = \mu \). On the other hand, if \(m^\equiv \neq \mu \)

then the above calculation shows that

\[H(\mu) \geq H(\mu^\equiv) > H(\ell), \]

a contradiction. Thus if \(\mu \) satisfies (i) and (ii) above, it

must be \(m^\equiv \). \(\square \).

If we know a priori that \(\rho^\equiv = \rho(x) dx \) for some

(positive) continuous function \(\rho \), say, of compact support,

then \(z / \log (1 - x_1 \Phi(1) + u(1)) \) is continuous and

\((m, 1) \) takes the following strange form:
Thm 156.1 (Variational setting: strong form).

Suppose \(q = q(x) \) for some cont. (pos.) func. 4 of compact supp. Then (i) (ii) above can be replaced by

\[(i)' \quad 2 \int_{\mathbb{R}} |x-y|^{-1} q^{|x|}(y) + U(x) = \mu(x) \quad \forall x \]

\[(ii)' \quad 2 \int_{\mathbb{R}} |x-y|^{-1} q^{|y|}(y) + U(x) = \mu(x) \quad \text{on} \quad 4x: 4(x) > 0 \]

We now show how to use Thm 156.1 to compute \(\mu \) for the case \(U(x) = \mu x^2 \), \(m \geq 0 \).

We need \(\mu \) in the form

\[(156.2) \quad \mu = 4(x) \]

with \(\int_{4(x)} = 1 \)

for some continuous \(4(x) > 0 \) of compact support, which satisfies (i)', (ii)' above. If we succeed in producing such a \(4(x) \), then \(\mu = 4(x) \) is necessarily \(\mu \) by Thm 156.1.
Now observe that the weak derivative of $f(x)$ is given by

$$F(x) = 2\int |y| |\psi(x-y反号)\| \chi(y) dy$$

$D F(x) = -2\int \phi(x) \int |y| |x-y反号| \psi(|y|) dy, \phi \in \mathcal{D}(\mathbb{R})$

$$= -\lim_{\varepsilon \to 0} \int \phi(x) \int |y| |x-y反号| \psi(|y|) dy$$

(by dominated convergence: indeed as ψ, ϕ have compact support and \int)

$$\leq \int |y| |x-y反号| dy + \int |y| dy \leq \int |y| |x-y反号| dy + \int |y| dy$$

$$\leq 0 \leq x \leq 2 \pi$$

$$= \lim_{\varepsilon \to 0} \int \phi(x) \int |y| |x-y反号| \psi(|y|) dy$$

$$= -\int \phi(x) \int |y| |x-y反号| \psi(|y|) dy, \phi \in \mathcal{D}(\mathbb{R})$$

We have

$$(157.1) \qquad \int \frac{4(y)}{x-y} dy = \frac{1}{11} \int \frac{4(y)}{x-y} dy$$
to the Hilbert transform of h. Here we have used the fact that $h \in C_c^\infty(\mathbb{R}) \subset L^2(\mathbb{R})$ and

$$
\frac{1}{i\pi} \int \frac{x-y}{(x-y)^2 + \varepsilon^2} \, h(y) \, dy \to Hh(x)
$$

in $L^1(\mathbb{R})$ (see, e.g., [Y. Katznelson], *An introduction to harmonic analysis*).

It follows that F has a distributional derivative in $L^2(\mathbb{R})$ and from (ii) we must have from (ii)

$$
(158.1) \quad -2\pi i H h(x) + H h'(x) = 0 \quad \text{a.e. on } \{4|x| > 0\}.
$$

Define the Borel transform G of h by

$$
(158.2) \quad G(z) = \frac{1}{i\pi} \int \frac{h(y) \, dy}{y - z}, \quad z \in \mathbb{C} \setminus \text{supp } h.
$$

Note that G is analytic on $\mathbb{C} \setminus \text{supp } h$. Now by standard theory (see again [Katznelson]) the limits

$$
(158.3) \quad G_+^\varepsilon(x) = \lim_{\varepsilon \to 0^+} \int \frac{h(y) \, dy}{y - (x + i\varepsilon)}
$$

and

$$
(158.4) \quad G_-^\varepsilon(x) = \lim_{\varepsilon \to 0^+} \int \frac{h(y) \, dy}{y - (x - i\varepsilon)}
$$
exists in $L^2(\mathbb{R}, d\mu)$, and also pointwise a.e., and

\[(15a.1)\quad G_\pm(x) = \pm 4(x) + i \, H_4(x)\]

We learn that, a.e., on $4(x) > 0$

\[(15a.2)\quad G_+(x) + G_-(x) = 2i \, H_4(x) = i \, \nu'(x)\]

Combining this with

\[(15a.3)\quad G(1_3) \to 0 \quad \text{as} \quad 3 \to \infty, \quad \text{we}

see that \((15a.2)\) \& \((15a.3)\) give a \underline{real} Riemann-Hilbert problem \((\text{RHP})\) for G, and hence for 4. This RHP is \underline{not in standard form} because of the sum $G_+ + G_-$ in \((15a.2)\) rather than the difference. In special cases, however, this can be converted into a standard RHP. Suppose, for example, that

\[(15a.4)\quad \left\{ \begin{array}{l}
\nu(x) > 0 \text{ consist of a finite #}
\text{of (disjoint) intervals} \\
(4(x) > 0) \quad \text{a.e.} \quad (a_i, b_i) = \Sigma
\end{array} \right.\]
Let
\[q(z) = \prod_{i=1}^{k} (3 - a_i \cdot x - b_i) \]
and define \((q(z))^{\frac{1}{2}} \) as an analytic function in \(C \setminus \Sigma \) so that
\[(q(z))^{\frac{1}{2}} \sim +z^k \quad \text{as} \quad z \to \infty \]

Set
\[\tilde{G}(z) = \frac{G(z)}{(q(z))^{\frac{1}{2}}} \]

Then for \(z \in \mathbb{C}\setminus\{0\} \) we have
\[(q(z))_{+}^{\frac{1}{2}} = - (q(z))_{-}^{\frac{1}{2}} \]

Hence for \(z \in \mathbb{C}\setminus\{0\} \)

\[\tilde{G}_{+}(z) - \tilde{G}_{-}(z) = \frac{G_{+}(z)}{(q(z))_{+}^{\frac{1}{2}}} - \frac{G_{-}(z)}{(q(z))_{-}^{\frac{1}{2}}} = \left[G_{+}(z) + G_{-}(z) \right] / (q(z))_{+}^{\frac{1}{2}} = \frac{i}{a} \frac{U'(z)}{(q(z))_{+}^{\frac{1}{2}}} \]
On the other hand \((q(3))^{1/2}\) is analytic
in \(\mathbb{C} \setminus \bar{\Sigma}\) and hence

\[(161.1) \quad \tilde{G}_+(z) - \tilde{G}_-(z) = 0, \quad z \in \mathbb{R} \setminus \bar{\Sigma}\]

so that \(\tilde{G}(z)\) is analytic in \(\mathbb{C} \setminus \Sigma\)

and also, clearly,

\[(161.2) \quad \tilde{G}_-(z) \to 0 \quad \text{as} \quad z \to \infty\]

Hence we are lead to a standard RHP

\[(161.3)(161.2)\] on \(\Sigma\), which can be solved by

the Plancherel formula

\[(161.3) \quad \tilde{G}_-(z) = \frac{1}{2\pi i} \int_{\Sigma} \frac{\frac{i}{\pi} \sqrt{1/s}}{(q(3))^{1/2} + s-z} \, ds\]

Indeed, by \((159.1)\)

\(\tilde{G}_+(z) - \tilde{G}_-(z) = \frac{1}{2} \left[\frac{i}{\pi} \sqrt{1/s} - (-\frac{i}{\pi} \sqrt{1/s}) \right] = \frac{i}{\pi} \sqrt{1/s} \quad \text{for} \quad s \in \Sigma.\)

And clearly \(\tilde{G}(z)\) is analytic

in \(\mathbb{C} \setminus \Sigma\) as \(\tilde{G}(z) \to 0 \quad \text{as} \quad z \to \infty.\)

We thus have
(162.1) \[G(z) = \left(\frac{g(3)}{2\pi i} \right)^{\frac{1}{2}} \sum \int \frac{d\xi}{(q(s))^{\frac{1}{2}}} \frac{V^{1/5}}{s - \xi} ds \]

Now, however, in general, \(G(z) \) does not decay as \(z \to \infty \). Indeed

(162.2) \[G(z) = \left(\frac{3^k + \ldots}{2\pi i} \right) \left(-\frac{1}{3} \right)^k \sum \int ds \frac{d\xi}{(q(s))^{\frac{1}{2}}} \frac{V^{1/5}}{s - \xi} \left(1 + \frac{s}{3} + \cdots + \frac{s^{k-1}}{3^{k-1}} \right) \]

and to ensure that \(G(z) \to 0 \) as \(z \to \infty \), the

\[k \text{ moment conditions} \]

(162.3) \[\sum \int \frac{V^{1/5}}{q(s)^{\frac{1}{2}}} s^j ds = 0, \quad j = 0, \ldots, k-1. \]

must be satisfied.

This gives \(k \) conditions on the \(2k \) endpoints \(a_1, b_1, \ldots, a_k, b_k \). Furthermore, from (158.2),

(162.4) \[G(y) = -\frac{1}{i\pi y} \int \frac{4(\xi)}{y} d\xi + O(\frac{1}{y^2}) \]

\[= -\frac{1}{i\pi y} + O(\frac{1}{y^2}) \]

as \(\int 4 dx = 1 \).
This leads to the additional condition from (162.2)

\[(163.1) \quad \frac{i}{2\pi} \int \frac{V^{1/3} s^k}{\Sigma (q(s))^{1/2}} ds = 1\]

Thus we still require \(k-1 \) relations to determine the endpoints of \(\Sigma \). These are obtained via the relation

\[(163.2) \quad \frac{d}{dx} \left[\int [2 \left(\log |x-y| + u(y) \right) dy + V(x)] \right] = -2\pi i H(x) \]

In order that (iii) is satisfied with the same constant \(d \) in all the \(k \) intervals \((a_i, b_i), 1 \leq i \leq k\), we must have

\[\frac{a_{i+1} - b_i}{a_i - b_i} = \frac{a_{i+1} - b_i}{a_i - b_i}\]

Equations (163.3) provide the remaining equations, in addition to (163.3) and (163.1), for \((a_1, b_1, \ldots, a_k, b_k)\).

In addition to (162.3) and (163.1) and (163.3) we have
Ke side conditions

\begin{equation}
\text{Re} \mathcal{G}_K(x) = 4 \chi_1 \geq 0 \quad \text{and} \quad \{\text{Re} \mathcal{G}_K(x) > 0\} = \Sigma
\end{equation}

\text{i.e., supp} \{4 \chi_1 dx\} = \Sigma.

\text{and (ii)},

\begin{equation}
2 \int \log |x-y|^{-1} 4(y) dy + V(x) \geq \epsilon \quad \forall x \in \Sigma.
\end{equation}

As

\[\epsilon = 2 \int \log |b_i - y|^{-1} 4(y) dy + V(b_i), \quad i = 1, \ldots, k - 1\]

we see that (164.2) can be written, using (163.2)

\begin{equation}
\int \left(4(y) - \frac{V'(y)}{2 \pi} \right) dy \leq 0, \quad b_i - x \leq a_i - x, \quad i = 1, \ldots, k - 1.
\end{equation}

\begin{equation}
\int \left(4(y) - \frac{V'(y)}{2 \pi} \right) dy \geq 0, \quad x < a,
\end{equation}

\begin{equation}
\int \left(4(y) - \frac{V'(y)}{2 \pi} \right) dy \leq 0, \quad x > b_k.
\end{equation}

To summarize, the above calculations show that

if \(\tilde{f}^e = \mu_1 \chi_1 dx\), where \(\mu_1 \chi_1\) is a cont. func. of

\[\Sigma = \bigcup_{i=1}^k (a_i, b_i)\]

compact support, \(\lambda\), then conditions \(163.3, 163.1, 163.3, 164.1\) (and \(164.3\))
must be satisfied. Conversely, suppose that Σ

is a union of intervals $\bigcup_{i=1}^k (a_i, b_i)$, and define $G(3)$

and suppose that $G(3)$ is continuous down to the axis from a_i.

by (162.1) Then if the pair $(\Sigma, \chi(x) = \Re G(x))$

satisfies (162.3)(16.3)(16.3) (164.1) and (164.3), then one

can show that $\chi(x)dx$ is the density measure for $\chi(x)$. (Note

that as $\chi(x) = \frac{1}{2}(G(x) + \Re G(x))$, $\chi(x)$ is continuous by assumption.)

Indeed, from (162.1) we see that $G(3) = \Theta(\frac{1}{b})$ as $\frac{1}{b} \to 0$

and hence, we are assuming that $G(3)$ is continuous down

to the real axis from a_i and $\chi(x)$, see below, by a simple

application of Cauchy's Theorem, we find that

$$G(3) = \frac{1}{2\pi i} \int_{a_i}^{b_i} \frac{G(x) - G_{+}(x)}{x - \zeta} \, dx.$$

However, as $G_{+}(3) = \Omega(3)$ for $3 \in \Sigma$, an

$$\overline{G(3)} = \overline{G(3)}$$ for $3 \in \Sigma \setminus \Sigma$, we see that

$$G(3) + \overline{G(3)} = 0 \quad \forall \zeta \in \Sigma \setminus \Sigma$$

and hence

$$G_{+}(x) + G_{-}(x) = 0 \quad \forall x \in \mathbb{R}.$$
and in particular, for \(x \in b_i \) or \(x \in a_i \), where

\[G(z) \text{ is analytic, so } 2 \pi i = G_+(x) + \overline{G_+(x)} = G_+(x) + G_-(x) = 0. \]

Similarly, \(4(x) = 0 \) for \(x \) in the gaps, i.e., \(x \in (b_i, a_{i+1}) \), \(i = 1, \ldots, k - 1. \)

(Note: (164.1) Could be replaced with the weaker assertion: \((164.1', \quad \sum_{i \in \mathbb{Z}} 1) < \infty \). For by the above calculation, we see that \(4(x) = 0 \) on \(\mathbb{R} \setminus \Sigma \), then (164.1) implies (164.1').

Thus, \[G(z) = \frac{1}{2\pi i} \int \frac{G_+(s) - G_-(s)}{s - z} \, ds \]

\[= \frac{1}{2\pi i} \sum \int_{C_i} \frac{G_+(s) + \overline{G_+(s)}}{s - z} \, ds \]

\[= \int_{\Sigma} 4(s) \, ds \]

As \(m(159.1) \) we learn that \(G_{\pm}(x) = \pm 4(x) + i 4(x) \),

which implies that \(G_+ + G_- = 2i 4(x) \). But then (162.1),

for \(x \in \Sigma \), \[G_+(x) + G_-(x) = \frac{i}{\pi} V(x) \quad \text{Hence} \]

\[-2\pi i 4(x) + V'(x) = 0, \quad x \in \Sigma \]

This implies as before that \(2 \int (x, x-y_1, 4(x)dy + V(x)) \)

is constant on \(\Sigma = 44(x) = c \), and only (163.3) it must
\[(16.7) \]

Let the same constant, say \(k \), in each interval \((a_i, b_i)\).

Finally, as \((16.4.3)\) is satisfied by assumption, we conclude that \((16.4.2)\) is true. It then follows by Theorem 156.1 that \(y(x)dx = \mu G(x)dx \), which is a probability measure by

\((16.4.1)\) and \((16.3.1)\), so the equilibrium measure for \(V(x) \).

Important Remark:

As noted above, \((16.1.3)\), \((16.5.1)\) and \((16.3.3)\) give 2k conditions for the 2k points \(a_1, a_2, \ldots, a_k \). This is true for any \(k \geq 1 \), and it may happen that we obtain solutions of these equations for many values of \(k \).

However, amongst all these solutions only one of them can solve the side conditions \((16.4.1)\) and \((16.4.3)\), and that one is the desired solution (see below)
Exercise: Show that if \(V \subseteq C^2(\mathbb{R}) \), then \(G(z) \) defined by (162.1) is continuous up to the boundary from \(C_+ \) and \(C_- \).