In the following are equivalent statements for a real $n \times n$ symmetric matrix A:

(i) A is strictly positive definite

(ii) $d_i(A) > 0$ for all eigenvalues of A, $i = 1, \ldots, n$

(iii) The principle minors d_i, $i = 1, \ldots, n$ are > 0

(iv) $A = C^T C$ for an upper triangular matrix C, $\det C \neq 0$.

(v) $A = B^2$, $\det B \neq 0$, for some real symmetric matrix B.

Proof: We have already proved (i) \Leftrightarrow (ii). By Sylvester's theorem $(i) \Rightarrow (iii)$.

(v) \Rightarrow (i): If $A = B^2$, $B = B^T$, $\det B \neq 0$,

\[
\langle u, Au \rangle = \langle u, B^T B u \rangle = \langle Bu, Bu \rangle = \| Bu \|^2 > 0
\]

Let $\delta = \inf \{ \| Bu \| : \| u \| = 1 \}$. As $\| u \| = 1 \Rightarrow u \rightarrow \| Bu \|

is a continuous function on a compact set, it must

achieve its infimum at some point u_0, $\| u_0 \| = 1$.

Thus $\langle u, Au \rangle = \| Bu_0 \|^2 > 0$ for $\| u \| = 1$.

If $\| Bu_0 \| = 0$, then as our $B \neq 0$, $u_0 = 0$, which is a contradiction. Thus $\delta > 0$ and $\langle u, Au \rangle > \delta \| u \|^2$. Thus (i) is true.
(i) \Rightarrow (v) \quad A = U \Lambda U^T, \quad U \text{ real orthogonal}, \quad \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n), \\
\lambda_i \geq 0, \quad i = 1, \ldots, n \\

Set \quad B = U \Lambda^2 U^T \quad \text{where} \quad \Lambda^2 = \text{diag}(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n}) \\
Then \quad A = B^2, \quad B = B^T \quad \text{and} \quad \det B > 0 \\
Clearly \quad B \text{ is real as } U \text{ and } \Lambda^2 \text{ are real.} \\

(iv) \Rightarrow (v) \quad (u, Au) = (u, C^T C u) = \| C u \|^2 \\
As above, \exists \text{ and } \| C u \| > 0 \quad \text{and so} \quad (u, Au) > \| C u \|^2 \| u \|^2 \\

(ii) \Rightarrow (iv) \quad \text{Do Gaussian elimination on } A \text{ as } a_{ii} = a_{ii} > 0 \\

\[
A = \begin{pmatrix}
\ddots & & \\
& a_{ii} & a_{in} \\
& \vdots & \ddots \\
& a_{ni} & \cdots & a_{nn}
\end{pmatrix} \Rightarrow \begin{pmatrix}
\ddots & & \\
& a_{ii} & a_{in} \\
& 0 & a_{ii} & \cdots & a_{in} \\
& \vdots & \ddots & \ddots & \ddots \\
& 0 & a_{ni} & \cdots & a_{nn}
\end{pmatrix}
\]

Now the sub-matrix \[
\begin{pmatrix}
a_{ii} & a_{i2} \\
0 & a_{22}
\end{pmatrix}
\]

is obtained by adding a multiple of the row \((a_{i1}, a_{i2}) \) to \((a_{21}, a_{22}) \)

Therefore, \[
a_{i2} = a_{i2} - (a_{i1} a_{i2}) = \text{det} \begin{pmatrix}
a_{ii} & a_{i2} \\
0 & a_{22}
\end{pmatrix} = a_{22} > 0
\]

Hence \(a_{i2} = a_{i2} / a_{ii} > 0 \)

Thus we can continue the reduction:

\[
\begin{pmatrix}
a_{ii} & a_{i2} & \cdots & a_{in} \\
0 & a_{i2} & \cdots & a_{in} \\
\vdots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & a_{nn}
\end{pmatrix} \Rightarrow \begin{pmatrix}
a_{ii} & a_{i2} & \cdots & a_{in} \\
0 & a_{i2} & \cdots & a_{in} \\
\vdots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & a_{nn}
\end{pmatrix}
\]
Arguing as above, we have
\[a_{33}' = \frac{d_3}{a_{11} a_{22}} > 0 \]

etc. Thus by Gaussian elimination, we can reduce \(A \rightarrow U \), where \(U \) is real and upper triangular with positive entries on the diagonal. Now Gaussian elimination is implemented by multiplying \(A \) at each step on the left by a lower triangular matrix with 1's on the diagonal

\[
\begin{pmatrix}
1 & 0 & 0 \\
\frac{d_{11}}{a_{11}} & 1 & 0 \\
\frac{d_{31}}{a_{31}} & 0 & 1
\end{pmatrix}
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{pmatrix}
\]

where \(d_{11} = -a_{11} / a_{11}, \quad d_{31} = -a_{31} / a_{11} \)

Thus we have
\[
L A = U
\]

for some lower triangular matrix with 1's on diagonal

Clearly \(\det L = 1 \neq 0 \) and no \(L^{-1} \) exists and must also be lower triangular (why?). Hence
\[
A = SU
\]

\(S \) lower, \(S_{ii} = 1, U \) upper \(U_{ii} > 0 \). Set \(U = DV \) where
\[D = \text{diag}(u_1, \ldots, u_n) \] Clearly \(V \) is upper unit
\[V_{ii} = 1, \quad i = 1, \ldots, n. \] Have \(A = SDV \). But \(A = A^T \)
and so \(A = V^TDS^T \). Equating these 2 expressions
for \(A \) we find \(WD = DW^T \) where \(W = V^TS \).

A lower triangular. Thus \(WD \) is lower, but \(DW^T \) is upper. Hence \(WD \) must be diagonal, and so
\[V^T S = \Delta \]
for some diagonal matrix \(\Delta \) i.e. \(S = V^T \Delta \).

But \(S_{ii} = V_{ii} = 1, \quad i = 1, \ldots, n \). Hence \(\Delta = I \) and
so \(V = S^T \). Thus
\[A = V^T D V \]
Set \(C = \text{diag}(\sqrt{u_1}, \ldots, \sqrt{u_n}) \) \(V \) and so \(A = C^T C \),
which is (iv).

Thus proves the Proposition.

\[(i) \xleftarrow{(\ast)} (i) \xrightarrow{\text{cl}} (ii) \xrightarrow{\text{cl}} (iii) \]

\[(i) \xrightarrow{(iv)} \]

We now begin addressing the following basic questions:

How do the eigenvectors of \(A \) depend on \(A \)? How do the eigenvectors of \(A \) depend on \(A \)?
Using Rao's Theorem (see Problem #5, Problem set #7)

All eigenvalues of \(nxn \) \(A \) are continuous functions of \(A \) in the following sense: Let \(\lambda_1, \ldots, \lambda_n \) be the eigenvalues of \(A \), counting (algebraic) multiplicity. Draw disks \(D(\lambda_i, \epsilon) \) of radius \(\epsilon > 0 \) around all the distinct eigenvalues \(\lambda_i \) of \(A \), where \(\epsilon \) is sufficiently small so that each disk contains only one (distinct) eigenvalue of \(A \). For example if \(n = 4 \) and \(\lambda_1, \lambda_2, \lambda_3, \lambda_4 \) are distinct, but \(\lambda_1 = \lambda_2 \). Then we draw

\[
\begin{array}{c}
\epsilon \\
D(\lambda_1, \epsilon) \\
D(\lambda_2, \epsilon) \\
D(\lambda_3, \epsilon) \\
D(\lambda_4, \epsilon)
\end{array}
\]

Then if \(\| B - A \| \) is sufficiently small, \(\epsilon \), the eigenvalues of \(B \) lie in these disks, and there are as many eigenvalues of \(B \), counting multiplicity, in each of these disks as the multiplicity of the eigenvalue of \(A \) at the center of the disk.

So in the example above for \(\| B - A \| \) sufficiently small, there are 2 eigenvalues of \(B \), counting multiplicity, in the disk around \(\lambda_1 = \lambda_2 \), and one eigenvalue in the other 2 disks.
We want to ask further questions: For example, are the eigenvalues and eigenvectors analytic functions of (the entries) of A?

Note: But in general the eigenvalues are not analytic functions of A. For example, for \(n = 2 \) with \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \),

\[\lambda^2 - \nu \lambda + \Delta = 0 \]

is the eigenvalue equation, where \(\nu = a + d, \Delta = ad - bc. \)

Then

\[\lambda = \frac{\nu \pm \sqrt{\nu^2 - 4\Delta}}{2} \]

But \(\nu^2 - 4\Delta = (a + d)^2 - 4(ad - bc) = (a - d)^2 + 4bc. \)

Now \(\sqrt{\nu^2 - 4\Delta} = \sqrt{(a - d)^2 + 4bc} \), \(\nu \) is an analytic function of \((a, b, c, d)\) in the neighborhood of any point \((a_0, b_0, c_0, d_0)\) where \((a_0 - d_0)^2 + 4b_0c_0 \neq 0 \). But if \((a_0 - d_0)^2 + 4b_0c_0 = 0 \) then \(\lambda \) is clearly not analytic.

In fact, its derivative blows up at this point. The takeaway trouble occurs at points at which \(\lambda_1 = \lambda_2 \), and only at such points.

We consider first the case where \(A(\rho) = (A_\nu(\rho)) \) depends analytically on one complete variable \(\rho \) lying in some region \(\mathbb{C} \). The standard example is \(A(\rho) = A + \rho B \).
where A and B are given $n \times n$ matrices. To see what can happen, consider the following examples (taken from T. Kato, Perturbation Theory for Linear Operators, Chap. II — this is a basic reference for perturbation theory)

c) $A(\beta) = \begin{pmatrix} 1 & \beta \\ \beta & -1 \end{pmatrix}$

For the eigenvalues, we have $\lambda = \pm \sqrt{1+\beta^2}$.

For $\beta = 0$, the eigenvalues are ± 1 so $\lambda_+(0) = \lambda_-(0)$, i.e., the spectrum is simple, and for $|\beta|$ small, we see that $A(\beta)$ and $\lambda(\beta)$ are analytic functions of β. The spectrum remains simple as long as $\beta \neq \pm i$. The eigenvectors are $v_\pm(\beta) = \begin{pmatrix} -\beta \\ 1 + \sqrt{1+\beta^2} \end{pmatrix}$

As long as $\beta \neq \pm i$, the eigenvectors are analytic and independent. However, if $\beta = \pm i$, then the eigenvalues and eigenvectors are no longer analytic at β, and moreover, the eigenvectors are no longer independent. Note also
That at \(\beta = \pm i \), \(A(\beta) = A(i) = \begin{pmatrix} i & 1 \\ i & -1 \end{pmatrix} \) is not diagonalizable: indeed as \(\lambda_{\pm}(\pm i) = \lambda_{\pm}(i) = 0 \), \(A(i) \) must be zero if it is diagonalizable, \(A(\pm i) = U \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} U^{-1} = 0 \), which is a contradiction.

If \(\beta \) is real, the eigenvector can be normalized

\[
(126.1) \quad \hat{\mathbf{v}}_{\pm}(\beta) = \left(\frac{\beta}{\sqrt{2(1 + \beta^2)}}, \frac{1 - \beta}{\sqrt{2(1 + \beta^2)}} \right)
\]

with \(\| \hat{\mathbf{v}}_{\pm}(\beta) \| = 1 \), in such a way that \(\hat{\mathbf{v}}_{\pm}(\beta) \) depends real analytically on \(\beta \).

(Exercise: Check that \(\hat{\mathbf{v}}_{\pm}(\beta) \) are indeed eigenvector, \(\| \hat{\mathbf{v}}_{\pm}(\beta) \| = 1 \) and that \(\hat{\mathbf{v}}_{\pm}(\beta) \) are analytic \(\forall \beta \in \mathbb{R} \), and \(\langle \hat{\mathbf{v}}_{\mp}(\beta), \hat{\mathbf{v}}_{\pm}(\beta) \rangle = 0 \).)

Note that \(\lambda_{+}(\beta) \neq \lambda_{-}(\beta) \) if \(\beta \neq 0 \).

(b) \(A(\beta) = \begin{pmatrix} \beta & 1 \\ 0 & \beta \end{pmatrix} \). Here the eigenvalues are \(\lambda_{\pm}(\beta) = \pm \beta \).

For \(\beta = 0 \), both eigenvalues are 0 and the spectrum is not simple. Nevertheless, the eigenvectors are \(\mathbf{v}_{\pm}(\beta) = (1, \pm 1)^T \), which can be normalized (trivially) for \(\beta \) real (in this case \(\forall \beta \)).
$$\hat{v}_\pm(\beta) = (\frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}})^T$$ such that \(\hat{v}_\pm(\beta)\) is analytic for all real \(\beta\) (cf. (26.1)) (in fact for all \(\beta\) in this case). Note that at \(\beta = 0\), \(A(0) = 0\), so that every vector is an eigenvector for \(A(0)\). To ensure analytic behavior of \(v_\pm(\beta)\) as \(\beta \to 0\), however, we cannot choose the eigenvector of \(A(0)\) freely; we must choose special vectors in \(N(A(0))\), viz.,

\[(27.1) \quad v_\pm(0) = (\frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}})^T\]

This is an illustrative example of singular perturbation theory.

Here we are trying to perturb the eigenvalues of \(A(0) = 0\) where \(A(0) = \lambda(0)\). The problem is singular because the eigenvectors of \(A(0)\) are not well-determined. It is the nature of the perturbation \(A(0) = \lambda(\beta)\) that determines which eigenvector \(v_\pm(0)\) of \(A(0)\) extends smoothly to \(v_\pm(\beta)\).

For example, consider \(\hat{A}(\beta) = \begin{pmatrix} \beta & 0 \\ 0 & \beta \end{pmatrix}\) with eigenvalues
$\lambda \pm (\beta) = \beta \left(\frac{1 \pm \sqrt{5}}{2} \right)$ and associated eigenvectors

$\mathbf{v}_\pm (\beta) = \left(1, \ -1 \pm \frac{\sqrt{5}}{2} \right) \ T$ \

So again,

we are dealing with a singular problem $\mathbf{A}(0) = 0$.

and the eigenvectors of $\mathbf{A}(0)$ that extend analytically are

$\left(127.1 \right) \quad \mathbf{v}_\pm (0) = \left(1, \ -1 \pm \frac{\sqrt{5}}{2} \right) \ T$

This should be compared with (127.1). The takeaway is the following: the ambiguity in the eigenvectors at $\beta = 0$ is resolved by the nature of the perturbation.

$\mathbf{A}(0) \rightarrow \mathbf{A}(\beta)$. Singular perturbation problems are very common in physics and applied mathematics: the unperturbed problem is singular in some sense, and the ambiguity in the problem is resolved by the specific nature of the perturbation.

$\left(128 \right) \quad \mathbf{A}(\beta) = \left(\begin{array}{cc} 0 & \beta \\ 0 & 0 \end{array} \right)$, Again the problem is singular at $\beta = 0$; $\mathbf{A}(0) = 0$ and so the eigenvectors of $\mathbf{A}(0)$ are not uniquely
determined. However, for $\beta \neq 0$, we still have

$$\lambda_{\pm}(\beta) = 0,$$

but $N(A(\beta)) = \langle (0) \rangle$ and thus

in no choice of a basis $(v_+(0), v_-(0))$ for $N(A(0))$

which continues analytically $v_{\pm}(0) \to v_{\pm}(\beta)$ as $A(0) \to A(\beta)$.

Only $v_{\pm}(\beta) = (0)$ continues. We note that the difference

between (b) and (c) is that in case (b), $A(\beta)$ is Hermitian

for β real, but not in case (c).

(1) $A(\beta) = \begin{pmatrix} 0 & 1 \\ -\beta & 0 \end{pmatrix}$. Here $\lambda_{\pm}(\beta) = \pm i \beta$. We see that

in this case there is no way to choose the branches of

$\sqrt{\beta}$ so that $\lambda_{\pm}(\beta)$ are analytic in β in a neighborhood

d of $\beta = 0$. Note that here the problem is singular in

the sense that $\lambda_{\pm}(0) = 0$ but $A(0)$ has only 1

eigenvalue $v(0) = (1, 0)^T$. For $\beta \neq 0$, $v_{\pm}(\beta) = (1, \pm i \beta)^T$

Thus the single eigenvalue $v(0) = (1, 0)^T$ differentiates to two

eigenvalues $v_{\pm}(\beta) = (1, \pm \sqrt{\beta})^T$ as $0 \to \beta$.

Again we note
That even for β real, $\beta \neq 1$, $A(\beta)$ is not Hermitian.

Contrast the singular perturbation problems (c) and (d), $A(\beta)$ has two eigenvectors, but we see that in case (c), only one of the eigenvectors

continues as $A(0) \rightarrow A(\beta)$. However, in case (d), $A(0)$ has only 1 eigenvector, which then bifurcates, non-analytically, to two eigenvectors as $A(0) \rightarrow A(\beta)$.

(c) $A(\beta) = \begin{pmatrix} 1 & \beta \\ 0 & 0 \end{pmatrix}$. Here $\lambda_+(\beta) = 1$ and $\lambda_-(\beta) = 0$,

which are clearly analytic (in fact constant) functions of β. The eigenvectors are $v_+(\beta) = (1, 0)$, $v_-(\beta) = (-\beta, 1)$,

which can be normalised as $\tilde{v}_+(\beta) = (1, 0)$, $\tilde{v}_-(\beta) = \left(\frac{-\beta}{\sqrt{1+\beta^2}} \right, 1)\sqrt{1+\beta^2}$

for β real. Note that this is true even as $A(\beta)$ is not Hermitian, $\beta \in \mathbb{R}$.

(d) $A(\beta) = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix}$. Here $\lambda_+(\beta) = \beta$, $\lambda_-(\beta) = 0$, which are clearly analytic in β.

Again the problem is singular at $\beta = 0$, as $\lambda_+ / \lambda_1 = 0$.

Here the eigenvectors are $v_+(\beta) = (0, 1)$ and $v_-(\beta) = (-1, 0)$, which
are analytic in β. Note that, as opposed to case (d), which also has a simple eigenvalue at $\beta(0)$, and for which the eigenvector bifurcates non-analytically, as $\epsilon \to 0^-$, in this case the eigenvector at $\beta = 0$, bifurcates analytically as $\epsilon \to 0^-$. Note also that for β real, the eigenvector can be normalized in an analytic fashion:

$$\hat{\psi}_+ (\beta) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \hat{\psi}_- (\beta) = \begin{pmatrix} \frac{1 + \beta \epsilon}{\sqrt{1 + \beta^2}} \\ \frac{-\beta}{\sqrt{1 + \beta^2}} \end{pmatrix},$$

In summary, what we observe/guess from these examples is that everything is "nice", i.e., all the eigenvalues and eigenvectors depend nicely on β in a neighborhood of a simple eigenvalue, when the eigenvalue is multiple, then things are still "nice" in the self-adjoint case $A(\beta) = A(\beta^*)$, $\beta \in \mathbb{R}$, but, in general, not in the non-self-adjoint case (but there are
In order to develop perturbation theory in full for n x n matrices, we need to introduce some concepts/definitions.

References for Perturbation Theory
1. T. Kato, as above, p. 225
2. Reed-Simon, Methods of Modern Math. Physics, Vol IV
3. F. Rellich, Perturbation Theory of Eigenvalue Problems

We say that a square matrix \(P \) is a projection if \(P^2 = P \). For a projection \(P \) we have:

\[
M_P = R(P), \quad N_P = N(P).
\]

Clearly \(R(P) \) and \(N(P) \) are subspaces.

Note that if \(x \in R(P) \), then \(x = Py \) for some \(y \) and no \(Px = P^2 y = Py = x \). Thus

\[
R(P) = \{ x : x = Px \}.
\]

Proposition. Let \(V = \mathbb{R}^n \) on \(\mathbb{R}^n \) and let \(P : V \to V \) be a projection. Then \(V \) has a direct decomposition \(V = R(P) \oplus N(P) \) if each \(x \in V \) has a unique representation

\[
x = r + n
\]

where \(r \in R(P) \) and \(n \in N(P) \).
Conversely, if
\[V = X \oplus Y \]
and a direct decomposition of \(V \), then
\[X = R(P) \quad \text{and} \quad Y = N(P) \]
for some projection \(P : V \to V \).

\textbf{Proof:} Let \(x \in V \), then
\[x = Px + (1-P)x \]
(\(Px \in R(P) \) and \((1-P)x \in N(P) \))
we see that \((1-P)x \in N(P) \).

Now suppose \(x' = x' + n' \) where \(x', r' \in R(P) \) and \(n, n' \in N(P) \). Then \(r - r' = n - n' \)
so \(P(x-r') = P(n') - P(n) = 0 \). Hence \(r = P r = P r' = 5' \).
But then \(n = n' \). Thus \(R(P) \oplus N(P) \) is indeed \(a \) direct decomposition.

Conversely, suppose
\[V = X \oplus Y \]
is a direct decomposition of \(V \) into subspaces \(x \oplus y \).

Set
\[Px = x \quad \text{if} \quad x \in X \]
\[Py = 0 \quad \text{if} \quad y \in Y \]
\[P' : \]
Then \(P' (x + y) = P(Px + Py) = Px \) \(\quad \) as \(Px \in X \) is \((P'(Px + Py) = P'Px = Px \). \] But \(Py = 0 \) and \(Py = 0 \).
\[p^2(x + y) = p(x + y) \quad \text{if} \quad p^2 = p. \]

Now suppose \(x \in \mathbb{X} \). Then \(x = px \in R(p) \), so \(x \subseteq R(p) \). On the other hand, if \(x \subseteq R(p) \), then \(x = pu \) for some \(u \in U \). But \(u = x' + v' \) for some \(x' \in \mathbb{X}, v' \in \mathbb{Y} \).

Hence \(x = pu = px' + py' = px' = x' \in \mathbb{X} \).

Thus \(R(p) \subseteq \mathbb{X} \) and so \(\mathbb{X} = R(p) \).

If \(y \in \mathbb{Y} \), then \(py = 0 \) and so \(y \in N(p) \).

Thus \(N(p) \subseteq \mathbb{X} \). On the other hand, if for some \(y \), \(py = 0 \), then \(y = x' + v' \), \(x' \in \mathbb{X}, v' \in \mathbb{Y} \).

Hence \(0 = py = px' + py' = px' = x' \). So \(x' = 0 \) and hence \(y = y' \in \mathbb{Y} \). Thus \(\mathbb{Y} = N(p) \), which proves the result. \(\square \).