1. Show by Gaussian elimination that the only left null vectors of

\[
M = \begin{pmatrix}
1 & 1 & 2 & 3 \\
1 & 2 & 3 & 1 \\
2 & 1 & 2 & 3 \\
3 & 4 & 6 & 2 \\
\end{pmatrix}
\]

are of the multiples of \(l = (1 \ -2 \ -1 \ 1) \). Then use the fact that for a linear map \(T \), \(R_T^\perp = N_{T^*} \) to conclude that the condition \(0 = u_4 \ - u_3 \ - 2u_2 \ + u_1 \) is necessary and sufficient to solve the system \(Mx = u \).

Answer: To find the left null vectors of \(M \), we perform Gaussian elimination on \(M^T \).

\[
\begin{pmatrix}
1 & 1 & 2 & 3 \\
1 & 2 & 1 & 4 \\
2 & 3 & 2 & 6 \\
3 & 1 & 3 & 2 \\
\end{pmatrix} \to \begin{pmatrix}
1 & 1 & 2 & 3 \\
0 & 1 & -1 & 1 \\
0 & 1 & -2 & 0 \\
-2 & -3 & -7 & \end{pmatrix} \to \begin{pmatrix}
1 & 1 & 2 & 3 \\
0 & 1 & -1 & 1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}.
\]

We may now use back-substitution to find \(l \). First we see \(l_4 = t \) is a free variable. The next row tells us that \(l_3 = -l_4 = -t \). Row 2 says \(l_2 = l_3 - l_4 = 2t \). Row 1 tells us that \(l_1 = -l_2 - 2l_3 - 3l_4 = t \). Altogether we have that \(l = t(1, -2, -1, 1) \), so \(N_{T^*} = \text{span}\{(1, -2, -1, 1)\} \).

We know that \(R_T^\perp = N_{T^*} = \text{span}\{(1, -2, -1, 1)\} \), so

\[\exists x \text{ s.t. } Mx = u \iff u \in R_T \iff l(u) = 0 \forall l \in R_T^\perp \iff t(u_1 - 2u_2 - u_3 + u_4) = 0 \forall t \iff u_1 - 2u_2 - u_3 + u_4 = 0.\]

i.e. \(Mx = u \) is solvable if and only if \(u_1 - 2u_2 - u_3 + u_4 = 0 \).

2. Suppose \(T \in \mathcal{L}(X), \dim X = n \) and let \(B : X \to \mathbb{R}^n \) be an isomorphism such that \(B\alpha_i = e_i, i = 1, \ldots, n \) for some basis \(B = \{\alpha_1, \ldots, \alpha_n\} \) of \(X \). Let \(M = BTB^{-1} \in \mathcal{L}(\mathbb{R}^n) \) and let \(M_{ij} = (Me_j)_i \) be the matrix associated with \(M \) as in Theorem 1 pg 32 (Lax). Show that \(T\alpha_j = \sum_{i=1}^n M_{ij}\alpha_i, i = 1, \ldots, n \). Thus \(M_{ij} \) is the matrix for \(T \) in the basis \(B \).

Answer: We use linearity of \(B \) and our definitions to see that

\[T\alpha_j = B^{-1}MB\alpha_j = B^{-1}Me_j = B^{-1}\sum_{i=1}^n (Me_j)_i e_i = \sum_{i=1}^n M_{ij}\alpha_i.\]

This is the definition of \(M \) being the matrix representation of \(T \) in the basis \(B \).

3. Let \(S \) be a linear operator in \(R^2 \) such that \(S^2 = S \) (i.e. \(S \) is a projection). Show that either \(S = 0 \) or \(S = I \) or \(S\alpha_j = \sum_{i=1}^2 A_{ij}\alpha_i j = 1, 2 \) for some basis \((\alpha_1, \alpha_2) \) for \(\mathbb{R}^2 \), where

\[A = \begin{bmatrix}
1 & 0 \\
0 & 0 \\
\end{bmatrix}.\]

Note: I understand this question was hard to read on the sheet, but the question only makes sense if the word after “\(S = I \)” is “or”, and so the homework was marked accordingly.

Answer: Since \(S \in \mathcal{L}(\mathbb{R}^2) \), we know that \(\text{rank}(S) = 0, 1, \) or 2. If \(\text{rank}(S) = 0 \), then \(R_S = \{0\} \), and so \(S = 0 \). If \(\text{rank}(S) = 2 \), then \(R_S = \mathbb{R}^2 \). Thus \(\forall y \in \mathbb{R}^2 \) there is an \(x \) such that \(Sx = y \). The fact that \(S^2 = S \) tells us that \(Sy = S^2x = Sx = y \), and so \(Sy = y \) for all \(y \in \mathbb{R}^2 \) and \(S = I \).
If \(\text{rank}(S) = 1 \), then \(\dim \mathcal{N}_S = \dim \mathcal{R}_S = 1 \) and so there exists \(\alpha_1 \neq 0 \) such that \(\mathcal{R}_S = \text{span}\{\alpha_1\} \) and \(\alpha_2 \neq 0 \) such that \(\mathcal{N}_S = \text{span}\{\alpha_2\} \). \(S^2 = S \) tells us that if \(S^2x = 0 \) then \(Sx = 0 \). By question 6 of homework 2, we have that \(\mathcal{R}_S \cap \mathcal{N}_S = \{0\} \). Thus \(\{\alpha_1, \alpha_2\} \) is a linearly independent set of 2 vectors, and so a basis.

To find the matrix of \(S \) in the basis \(\{\alpha_1, \alpha_2\} \), note that \(\alpha_1 \in \mathbb{R}_S \) implies that there is a \(y \) so that \(Sy = \alpha_1 \), then \(S\alpha_1 = S^2y = Sy = \alpha_1 \). Now write \(x = c_1\alpha_1 + c_2\alpha_2 \), and so

\[
Sx = c_1S(\alpha_1) + c_2S(\alpha_2) = c_1\alpha_1.
\]

Thus the matrix for \(S \) is the required \(A \).

4. Let \(X \) be an \(n \)-dimensional vector space over a field \(K \), and let \(\mathcal{B}\{\alpha_1, \ldots, \alpha_n\} \) be a basis for \(X \).

(a) Show that there is a unique linear operator \(T \) on \(X \) such that \(T\alpha_j = \alpha_{j+1} \), \(j = 1, \ldots, n-1 \), and \(T\alpha_n = 0 \). What is the matrix \(A \) of \(T \) in the basis \(\mathcal{B} \). i.e. \(T\alpha_i = \sum_{i=1}^n A_{ij}\alpha_i \), \(i = 1, \ldots, n \)

\[A_{ij} = \begin{cases} 0 & \text{if } i = j+1 \\ 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases} \]

(b) Prove that \(T^n = 0 \) and \(T^{n-1} \neq 0 \).

\[A_{ij} = \begin{cases} 0 & \text{if } i = j+1 \\ 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases} \]

\(A \)

(c) Let \(S \) be any linear operator on \(X \) such that \(S^n = 0 \), but \(S^{n-1} \neq 0 \). Prove that there is a basis \(\mathcal{B}' \) for \(X \) such that the matrix for \(S \) in the basis \(\mathcal{B}' \) is the matrix \(A \) from part a).
Answer: Since $S^{n-1} \neq 0$, there exists an α_1 such that $S^{n-1} \alpha_1 \neq 0$. If we let $\alpha_j = S^{j-1} \alpha_1$, I claim that $\mathcal{B}' = \{\alpha_1, \ldots, \alpha_n\}$ is a basis for X. Clearly it has the right number of elements, so we need only check linear independence.

Suppose c_1, \ldots, c_n are such that
$$c_1 \alpha_1 + \cdots + c_n S^{n-1} \alpha_1 = 0$$
then applying S^{n-1} to both sides gives
$$c_1 S^{n-1} \alpha_1 + S^n (\alpha_1 + S \alpha_1 + \cdots + S^{n-2} \alpha_1) = 0.$$
By the definition of α_1, and the fact that $S^n = 0$, this tells us that $c_1 = 0$. We repeat this process by multiplying by S^{n-j} to show that all of the c_j’s are zero and so \mathcal{B}' is a set of n linearly independent vectors, and so a basis for X.

This basis also clearly satisfies the property that
$$S \alpha_j = S^j \alpha_j = \alpha_{j+1}, j = 1, \ldots, n-1, \text{ and } S \alpha_n = S^n \alpha_1 = 0 \alpha_1 = 0.$$
Thus S satisfies the same properties that defined T in part a), and so has the same matrix representation.

(d) Prove that M and N are $n \times n$ matrices over K such that $M^n = N^n = 0$ but $M^{n-1} \neq 0$ and $N^{n-1} \neq 0$, then M and N are similar.

Answer: By part c), there exists bases \mathcal{B}_1 and \mathcal{B}_2 such that writing M and N in those respective bases gives the same matrix representation A. Representing these change of basis operations by the matrices P_1 and P_2, we see that
$$P_1 M P_1^{-1} = A = P_2 N P_2^{-1}$$
$$\Rightarrow M = P_1^{-1} P_2 N P_2^{-1} P_1 = (P_1^{-1} P_2) N (P_1^{-1} P_2)^{-1},$$
and so M and N are similar.

5. Let W_1 and W_2 be subspaces of a finite-dimensional vector space X

(a) Prove that $(W_1 + W_2)^\perp = W_1^\perp \cap W_2^\perp$.

Answer: Let $l \in (W_1 + W_2)^\perp$, then for all $w_1 \in W_1$ and $w_2 \in W_2$, $l(w_1 + w_2) = 0$. In particular, choosing $w_2 = 0$ (allowed since W_2 is a subspace) gives that $l(w_1) = 0$ for all $w_1 \in W_1$, so $l \in W_1^\perp$. Choosing $w_1 = 0$ similarly shows that $l \in W_2^\perp$. Thus $l \in W_1^\perp \cap W_2^\perp$. Since this is true for all $l \in (W_1 + W_2)^\perp$, we have shown that $(W_1 + W_2)^\perp \subset W_1^\perp \cap W_2^\perp$.

Now suppose $l \in W_1^\perp \cap W_2^\perp$. Then for all $w_1 \in W_1$ and $w_2 \in W_2$, $l(w_1) + l(w_2) = 0$. Using linearity, we see that
$$l(w_1 + w_2) = l(w_1) + l(w_2) = 0,$$
so $l \in (W_1 + W_2)^\perp$. Since this is true for all $l \in W_1^\perp \cap W_2^\perp$, we have that $W_1^\perp \cap W_2^\perp \subset (W_1 + W_2)^\perp$.

Since we have shown containment in both directions, we have the desired equality.
(b) Prove that \((W_1 \cap W_2)^\perp = W_1^\perp + W_2^\perp\).

Answer: If we let \(Z_1 = W_1^\perp\) and \(Z_2 = W_2^\perp\), then part a) tells us that

\[
(Z_1 + Z_2)^\perp = Z_1^\perp \cap Z_2^\perp
\]

\[
\Rightarrow (W_1^\perp + W_2^\perp)^\perp = (W_1^\perp)^\perp \cap (W_2^\perp)^\perp.
\]

Using the fact that for any subspace \(Y\), \((Y^\perp)^\perp = Y\), we have that

\[
(W_1^\perp + W_2^\perp)^\perp = W_1 \cap W_2
\]

\[
\Rightarrow W_1^\perp + W_2^\perp = (W_1 \cap W_2)^\perp.
\]