We conclude from the above that if

\[T^* = T', \quad D(T) = \mathcal{D} \]

then \[D(T) = \{ \mathbf{f} \in \mathcal{L}^2 ; \mathbf{f} \to \mathbf{f}' \mathbf{e} \mathcal{L}^2 \} \]

\[T^* \mathbf{f} = \mathbf{f}' \]

Lecture 3

Definition 35.1: Adjoint Operator \(T^* \)

Let \(T \) be a densely defined operator in \(\mathcal{D} \). Let

\[D(T^*) \] is the set of \(\mathbf{f} \in \mathcal{D} \) for which \(T \mathbf{f} \in \mathcal{D} \)

\(s^+ \)

\[(35.2) \quad (T \mathbf{u}, \mathbf{e}) = (\mathbf{u}, \mathbf{m}) \quad \forall \mathbf{u} \in D(T) \]

Then for \(\mathbf{u} \in D(T^*) \),

\[T^* \mathbf{u} = \mathbf{m} \]

(35.3)

Note: That as \(T \) is densely defined, \(\mathbf{m} \) is unique in (35.2) and hence \(T^* \) is well-defined.

Note: \(\mathbf{u} \in D(T^*) \) if and only if \((T \mathbf{u}, \mathbf{e}) = (\mathbf{u}, \mathbf{m}) \) is a bounded linear functional on \(\mathcal{L}^2 \).
Note:

\[(36.1) \quad \zeta \in D(T^*) \iff \left((T^* \zeta, \Phi) \leq C \| \Phi \|_{L^1} + 4 \in D(T) \right) \quad \text{(why ?)}\]

\[(36.2) \quad S \subset T = T^* C S^*.\]

Clearly, \(0 \in D(T^*)\), but unlike the case of bounded operators, \(D(T^*)\) may not be dense. In fact,

there are examples where \(D(T^*) = \{0\}\).

\[\text{Example 36.3} \quad \text{bounded}\]

Let \(\zeta\) be a measurable function such that

\[\zeta \in L^2(\mathbb{R}) \quad \text{and} \quad D(T) = \{ \zeta \in L^2(\mathbb{R}) : \int \left| \zeta(x) \right|^2 \, dx < \infty \} \]

Let \(\Phi_0 \equiv 0\) be some fixed vector in \(L^2(\mathbb{R})\). Define

\[T \Phi = (\zeta, \Phi) \Phi_0 \]

\[= \left(\int \zeta(x) \Phi(x) \, dx \right) \Phi_0, \quad \Phi \in D(T).\]

As \(D(T)\) certainly contains all \(L^2\) functions with compact support, we see that \(T\) is densely defined.
Now suppose \(f \in D(T^*) \). Then for some \(m \)

\[
(\mathbf{r}^*, f) = \mathbf{r}^* f \in L^2
\]

\[
(f, \mathbf{r}^* f) = (f, \mathbf{r}) = 0 \forall \mathbf{r} \in D(T)
\]

\[
\iint f(x, \mathbf{r}) \overline{\psi(x, dx)} \mathbf{r}(x) dx = 0.
\]

As \(\mathbf{r} \) can be any \(L^1 \) func. with compact supp we must show

\[
\eta(x) = (f_0, \mathbf{r}) \mathbf{r}(x)
\]

But R.H.S \(\in L^2 \) \(\Rightarrow \) \((f_0, \mathbf{r}) = 0 \). Thus \(D(T^*) \) is L

\[
to f_0 \text{ and hence cannot be dense}. \text{ Note also that}
\]

\[
+^* f = \eta = 0 \text{ for } f \in D(T^*).
\]

Exercise: Extend the above construction to show

\[
T \text{ densely defined } T^* D(T^*) \in \mathcal{B}(L^2)
\]

Observe that \(T \) in 36.3 is not closable.

Indeed as \(f \in L^2 \), \(T \) compact subsets \(S_n \) of \(L^2 \)
such that
\[\int_{\mathbb{R}} |f(x)|^2 \, dx = n. \]

Let \(y_n = \frac{1}{n} x_{5n} \), \(n \geq 1 \). Clearly \(y_n \in D(T) \) and
\[\|y_n\| = \frac{1}{n^2} / \|x_{5n}\| = \frac{1}{n^2} \rightarrow 0 \text{ as } n \rightarrow \infty. \]
But \(Ty_n = \langle f, y_n \rangle y_0 = \left(\frac{1}{n} / \|f\| \right) y_0 = y_0 \). So \(y_n \rightarrow 0 \) but \(Ty_n \neq 0 \).

It turns out that there is an intimate relationship between the closability of an operator and the dense definition of its adjoint.

Note that if \(T^* \) is densely defined, then we may define \(T^{**} = (T^*)^* \).

Theorem 38.1 Let \(T \) be a densely defined operator in \(H \). Then
(a) \(T^* \) is closed
(b) \(T \) is closable \(\iff \) \(T^* \) is densely defined, in which case \(\overline{T} = T^{**} \)
(c) If \(T \) is closable, then \((T^*)^* = T^* \).
Proof (a) Suppose \(D(T^*) \ni \phi_n \rightharpoonup \phi \rightharpoonup \phi \).

Now \(\forall \psi \in D(T) \), \((T\psi, \phi_n) = (\psi, T^*\phi_n) \).

Letting \(n \to \infty \) we obtain \((T\psi, \phi) = (\psi, T^*\phi) \) \(\forall \psi \in D(T) \).

Hence \(\phi \in D(T^*) \) and \(T^*\phi = \phi \). Thus \(T^* \) is closed.

(b) Suppose \(D(T^*) \) is dense and \(\phi \in D(T^*) \). Then

\[
(T\psi, \phi) = (\psi, T^*\phi) \quad \forall \psi \in D(T) \tag{39.1}
\]

Now suppose \(D(T) \ni \phi_n \rightharpoonup \phi \rightharpoonup \phi \).

Then \(T\phi_n \rightharpoonup T\phi \).

Then from (39.1), \((\psi, \phi) = (0, T^*\phi) = 0 \).

But as \(D(T^*) \) is dense, we conclude \(\phi = 0 \). Thus \(T \) is closable.

The proof of the converse is more involved. Let

\[
T^*(T) = \text{graph of } T = \{ (x, T\phi) : x \in D(T) \} \subset H \times H.
\]

\(H \times H \) is a Hilbert space with inner product \(\langle x, y, x', y' \rangle \)

\(\langle x, y, x', y' \rangle = \langle x, x' \rangle + \langle y, y' \rangle \).
Now

\[\langle \phi, g \rangle \perp T^*(T) \text{ in \# \times \#} \]

\[\iff (\phi, u) + (g, Ty) = 0 \quad \forall u \in D(T) \]

\[\iff (y, Ty) = (-\phi, u) \quad \forall u \in D(T) \]

\[\iff g \in D(T^*) \text{ and } \tau^x y = -\phi \]

(40.1) Hence,

\[T(T) = \{ \langle T^*g, y \rangle : g \in D(T^*) \} \]

Now (exercise):

\[T \text{ is closable } \iff \overline{T(T)} \text{ is a graph and } \overline{T(T)} = T(T) \]

Clearly, \(T \text{ is closed } \iff T(T) \text{ is closed} \)

Thus if \(T \text{ is closable, then from (40.1) } \)

\[\# \times \# = \overline{T(T)} \oplus (\overline{T(T)})^\perp = T(T) \oplus (T(T))^\perp. \]

(Here we use \((T(T))^\perp = (T(T))^\perp \).

Thus any \(\langle \phi, g \rangle \in \# \times \# \) can be written

uniquely as

\[\langle \phi, g \rangle = \langle \phi, Ty \rangle + \langle -T^*\phi, \phi \rangle, \quad \forall \phi \in D(T), \]

\[\phi \in D(T^*) \]

If \(D(T^*) \) is not dense, then \(\exists \, \psi \neq 0, \psi \perp D(T^*) \).

Then

\[\langle \psi, \phi \rangle = \langle \phi_0, Ty \rangle + \langle -T^*\phi_0, \phi_0 \rangle \text{ for suitable } \phi_0 \]
\[\Phi_0 \in D(T^*), \quad \Phi_0 \in D(T)^* \]

i.e.

\[(41.1) \quad 0 = \Phi_0 - T^* \Phi_0 \]
\[(41.2) \quad \Phi = T^* \Phi_0 + \Phi_0 \]

As \((\Phi, \Phi_0) = 0\), we have from \((41.2)\)

\[\| \Phi_0 \|_T + (T^* \Phi_0, \Phi_0) = 0 \]

but by part (c) (see below), \(T^* = T^*\), and so

\[\| \Phi_0 \|_T + (\Phi_0, T^* \Phi_0) = 0 \]

by \((41.1)\) we then obtain

\[\| \Phi_0 \|_T + \| \Phi_0 \|_T = 0 \]
\[\therefore \Phi_0 = \Phi_0 = 0 \quad \Rightarrow \quad \Phi = 0 \], which is a contradiction.

Thus \(T^*\) is densely defined.

\[T(T) = T(T) \text{ is closed.} \]

For \(T\) closable, and from \((40.1)\) (recall \(X = X^{**}\) for any closed set \(X \subset T\)).

\[T^* (T) = T (T^{**}) \]
\[= \left\{ g \in T^* : g \in D(T^*) \right\} \]

but by the proof of \((40.1)\), this is just \(T^* (T^{**})\).

Thus \(T = T^{**}\).
Finally we prove (c). Suppose T is closable.

We have that $T^* \subseteq \text{Dom}(T^*) \implies (\mathcal{L}^* + (4, \mathcal{L}^* \mathcal{L}^*) + 4) \subseteq T^*$.

But then closable T, we obtain $(\mathcal{L}^* + 4) \subseteq (4, \mathcal{L}^* \mathcal{L}^*) + 4$.

Since $\mathcal{L}^* \subseteq \text{Dom}(T)$, hence $T^* \subseteq (\mathcal{L}^* \mathcal{L}^*)^*$. Conversely, as $\mathcal{T} \subseteq T$, we always have $(\mathcal{L}^* \mathcal{L}^*)^* \subseteq T^* \subseteq (\mathcal{L}^* \mathcal{L}^*)^*$.

Definition 4.2.1 (spectrum & resolvent set)

Let T be a (densely defined) closed operator in \mathbb{H}.

A complex number λ is in the resolvent set $\rho(T)$ of T if $\lambda - T$ is a bijection of $\text{Dom}(T)$ onto \mathbb{H}.

If $\lambda \in \rho(T)$, $R_\lambda(T) = (\lambda - T)^{-1} : \mathbb{H} \to \text{Dom}(T)$ is called the resolvent of T at λ. Here $R_\lambda(T) = 1_{\text{Dom}(T)}$.

Exercise: If $\lambda - T$ is closed, then $\lambda - T$ is closed on $\text{Dom}(T)$ and $\lambda \in \rho(T)$.

A very important fact is that if $\lambda \in \rho(T)$, then $R_\lambda(T)$ is a bounded operator. This fact lies at the heart of the analytic viability of closed operators.
As \(R_x(T) \) is everywhere defined, it is sufficient by the Closed Graph Theorem to show that \(f \)

\[f_n \to f \quad \text{and} \quad R_x(T) f_n \to g \]

Then \(R_x(T) f = g \). But \(R_x(T) f_n \to \text{dom}(T) \)

\[= D(\lambda - T) \]

and \((\lambda - T)(R_x(T) f_n) = f_n \to f \)

Also \(R_x(T) f_n \to g \)

Hence as \(\lambda - T \) is closed on \(D(T) \), \(g \in D(\lambda - T) \)

\[(\lambda - T)g = f \quad \text{iff} \quad g = R(T)f , \] which is what we wanted to prove.

Thm 43.1

Let \(T \) be closed in \(\mathfrak{B} \). Then \(P(T) \) is an open subset of \(C \) on which \(R_x(T) \) is an analytic operator valued function. Furthermore
\{ R_\lambda(T) : \lambda \in \rho(T) \}

is a commuting family of bounded operators satisfying

\[(44.1) \quad R_\lambda(T) - R_\mu(T) = (\mu - \lambda) R_\mu(T) R_\lambda(T) \]

Proof: Exercise.

We define

\[\sigma(T) = \text{spectrum of } T = \mathbb{C} \setminus \rho(T) \]

Clearly \(\sigma(T) \) is a closed subset of \(\mathbb{C} \). The spectrum \(\sigma(T) \) can be broken up in different ways into point spectrum, etc., as mentioned in Lecture 1.

Exercise: Let \(\Omega \) be a closed set in \(\mathbb{C} \). Show that \(\Omega \) is the spectrum of some operator in \(L^2(\mathbb{R}^d) \) (Hint: Show that \(\Omega \) has a countable dense subset.)

The spectrum of an operator is a subtle matter, as we see from the following 2 examples:

Let \(AC(0,1) = \{ f : f \in L^1(0,1) \} : f \) is absolutely continuous on \([0,1]\) and \(f'(x) \in L^1(0,1) \).

Let

\[D(T_1) = \{ \psi : \psi \in AC[0,1] \} \]

\[D(T_2) = \{ \psi : \psi \in AC[0,1], \psi(0) = 0 \} \]

And let

\[T_j \psi = i \psi'(x) \quad \text{if } \psi \in D(T_j), \quad j = 1, 2. \]
A similar calculation to that given above shows that both T_1 and T_2 are closed operators.

However

\[(4.5.1) \quad \sigma(T_1) = \mathbb{C} \]

\[(4.5.2) \quad \sigma(T_2) = \emptyset \]

Proof: To see that $\sigma(T_1) = \mathbb{C}$ simply observe that $\lambda = e^{ix} \in D(T_1)$ for any $\lambda \in \mathbb{C}$ as

\[(\lambda - T_1)e^{ix} = (\lambda + i\alpha \lambda)e^{-ix} = 0\]

so that $\lambda - T_1$ is not $1-1$ for any λ. As for T_2, suppose that $h \in C$ and $g \in L^2[0, 1]$ are given and we try to solve the equation

\[(4.5.3) \quad (\lambda - T_2)\varphi = g\]

for $\varphi \in D(T_2)$. Then necessarily $\lambda \alpha - i\varphi = g$

i.e. $-i \frac{d}{dx}(e^{ix}\varphi) = g$
\[-i \ e^{ix} f(x) = -i \ e^{ix} f(x) \ \bigg|_{x=0} + \int_0^x e^{i\lambda (x-t)} \ g(t) \ dt \]

\[= \int_0^x e^{i\lambda x} g(t) \ dt \]

\[= \left(S_\lambda g \right)(x). \]

So we take (46.1) as our starting point. Observe that given \(\lambda, g, f = S_\lambda g(x) \in AC(0,1)\) and \(f(0) = 0\), so \(f \in \mathcal{D}(T_2)\). Also

\[\left(\lambda - T_2 \right) f = \left(\lambda - i \ \frac{d}{dx} \right) \ \int_0^x e^{i\lambda (t-x)} \ g(t) \ dt \]

\[= \ i \ \int_0^x e^{i\lambda (t-x)} \ g(t) \ dt \]

\[+ e^{i\lambda (x-x)} \ g(x) \ - i \ \int_0^x e^{i\lambda (t-x)} \ g(t) \ dt \]

\[= g(x) \]

Thus \(\lambda - T_2\) is onto. Also for \(f \in \mathcal{D}(T_2)\)

and \(\left(\lambda - T_2 \right) f = 0\), then as above \(-i \ \frac{d}{dx} (e^{i\lambda x} f) = 0\)

and no \(e^{i\lambda x} f(x) = \text{const} = c\). But \(f(0) = 0\) and \(c = 0\). Thus \(f(x) = 0\) and no \(T_2\) is \(1-1\). It follows
that \(p(t) = C \).

Examples (45.1) (45.2) are in sharp contrast with all situations for bounded operators and self-adjoint operators (see below).

Firstly, if \(T \) is bounded then (exercise),

\(\sigma(T) \) is a bounded, non-empty set. Secondly, if \(T \) is self-adjoint (bounded or unbounded) then

\(\phi \neq \lambda \sigma(T) \subset \mathbb{R} \).

Remark:

By general principles noted above, \(S_1 \) is dense from \(L^1 \to L^1 \); it is of interest to check this directly (exercise!)

We now formally distinguish between

symmetric operators and self-adjoint operators

Defn: A densely defined operator \(T \) an \(\mathcal{H} \) is called
symmetric (or self-adjoint) if

\[(48.1) \quad \Gamma \subseteq \Gamma^*
\]

i.e. if \(\mathcal{D}(\Gamma) \subseteq \mathcal{D}(\Gamma^*) \) and \(\Gamma \Psi = \Gamma^* \Psi \neq 0 \in \mathcal{D}(\Gamma) \)

Equivalently

\[(48.2) \quad (\Gamma \Psi, \Psi) = (\Psi, \Gamma \Psi) \quad \forall \Psi, \Psi \in \mathcal{D}(\Gamma).
\]

Definition:

\(\Gamma \) is called self-adjoint if \(\Gamma = \Gamma^* \) i.e.

\(\Gamma \) is symmetric and \(\mathcal{D}(\Gamma) = \mathcal{D}(\Gamma^*) \)

Clearly if \(\Gamma \) is self-adjoint, then \(\Gamma \) is closed.

Remarks:

\[(48.5) \quad \text{If } \Gamma \text{ is symmetric and bounded, then } \Gamma \text{ is s. adj.}
\]

\[(48.6) \quad \text{If } \Gamma \text{ is symmetric, then by } (48.1) \ \mathcal{D}(\Gamma^*)
\]

is dense. Hence \(\Gamma \) is automatically closable.

As \(\Gamma^* \) is always closed by Theorem 38.1(a), then

If \(\Gamma \) is symmetric, \(\Gamma^* \) is a closed extension
of T^* and we have

$$T \subset T^* = T^{**} \subset T^*$$

In particular for closed sym. operators

$$T \subset T^{**} \subset T^*$$

and for s.a.d. operators

$$T = T^{**} = T^*$$

Thus

$$T = T^{**} = T^*$$

a closed sym. op T is s.a.d. if and only if T^* is symmetric

Example: Consider

$$T_3 f = f'(x)$$

with domain $\mathcal{D}(T_3) = \{ f \in L^2(0,1) : f \in AC[0,1], f(0) = f(1), f(0) = f(1) \} = 0 \}$$

As before, we see that T_3 is a closed operator.

It is also symmetric: Indeed for $f, g \in \mathcal{D}(T_3)$,
\[(\phi, T_3 g) = \int_0^1 \phi' \, g' = \int_0^1 (\phi', g) = (T_3 \phi, g)\]

Here we use integration by parts which is valid because \(AC [0,1] \) is an algebra (check this).

and \(\phi' \) and \(g' \) vanish at 0 and at 1, so there are no boundary terms.

Claim:

Let

\[D(s) = \{ \phi \in L^1 : \phi \in AC(0,1) \} \]

\[S \phi = i \phi', \ \phi \in D(s)\]

Then \(S = T_3 \).

Indeed for \(\phi \in D(s) \) and \(g \in D(T_3) \), then

\[(50.1) \quad (\phi, T_3 g) = \int_0^1 \phi' \, g' = (i \phi', g) = (S \phi, g)\]

Again use eq. by parts in valid case as \(f(x) \) is cont. on \([0,1]\) (why?) and \(g(T_3 \phi) = g(\phi) = 0\), again there are no boundary terms. Thus by (50.1)
\(\mathcal{P} \in D(T_3^{-1}) \text{ and } T_3^{-1} \mathcal{P} = \mathcal{S} \mathcal{P} \implies \mathcal{S} \subseteq T_3^{-1} \mathcal{P} \)

(Conversely, suppose \(\mathcal{P} \in D(T_3^{-1}) \text{ and } \mathcal{G} \in D(T_3) \).

Then \((\mathcal{P}, T_3 \mathcal{G}) = \int_0^1 \mathcal{F} \mathcal{G}' = \int_0^1 h \mathcal{G} \) for some \(h \in L^2 \).

\[h = T_3^{-1} \mathcal{P}. \]

For \(H(x) = \int_0^x h(t) \ dt \) at \(a \), we obtain

as on p.33 that (the units of measure drop out as \(q(0) = q(1) = 0 \))

\[\int_0^1 \mathcal{F} \mathcal{G}' = -\int_0^1 H(x) \mathcal{G}'(x) \]

and no \(\int_0^1 \mathcal{F} - H(x) \mathcal{G}'(x) \ dx \), \(\forall \mathcal{G} \in D(T_3) \)

and we conclude as before that

\[\mathcal{F}(x) = H(x) + c = \int_0^x h(t) \ dt + c. \]

Thus \(\mathcal{F} \in AC(0,1) \) and \(\mathcal{F}' = h = T_3^{-1} \mathcal{P} \).

This shows that \(T_3^{-1} \subseteq S \), and hence establishes the claim.

Thus \(T_3^{-1} \mathcal{P} = \mathcal{S} = T_1 \mathcal{P} \).

(See p.44.)