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Exercise 1 problem set 7

J.W. Portegies
April 22, 2011

In this exercise, we solve the Dirichlet problem by means of a double layer
potential method and the compact operator theorem. We assume that O CR3
is a connected open set with smooth boundary 9. By the latter, we mean that
for every zo € 09, there exists an 75, > 0 and a C™ function g®0) : R? - R,
g®9(0) = 0, Vg(#)(0) = 0, such that, upon rotation and translation (without
loss of generality assuming zo = 0),

QN By, (z0) = {2 € By, (0) | 23 > g(21, 22)}, (1)

where we use the notation B, (a) for an open ball with radius r around a point
a, that is
B.(a) :={z eR®||z —a| <1},

see Fig. 1.

Figure 1: After rotating and translating, the surface 9Q can locally around zg
be written as a graph of a function g(*0), according to (1).

Given a function f € C(99Q), we would like to solve
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For y € 89, we define
1 (x-y,n
K(x,y)=_(__L3Q,
2 |z -yl

where n, denotes the exterior (unit) normal to 8Q at the point y. The scheme
for finding a solution to the Dirichlet Problem (2) is then as follows. First, find
a function ¢ € C(89) such that

f(z) = —¢(z) + /8 . K(z,y)o(y)dS,,  for all z € HQ. (3)

Then, u defined by
u(z) = /a K(z,0)00)ds, (@)

is harmonic and smooth on €, and

nazllg.l)ean u(z) = f(zo).

Note that due to the special structure of K, the above definitions (3) and (4)
are invariant under rotations and translations of the coordinate frame. Actual
computations can therefore always be done locally, representing the surface by
the graph of a function g.

We will show that the above scheme works. Our treatment follows Reed and
Simon, volume 1, but we will work out more of the details. We divide the proof
in several steps.

Step 1 We show that given y € C(09),
ve) = [ K@uww)ds,,
1)

is well-defined for all x € R®. That is, the integral on the right hand side
is convergent.

As we will see, v is smooth for z ¢ 89, but for zo € 8Q, there is a jump
of height 2¢(zo) across the boundary. The value v(zo) is the average of
the limiting values of v coming from Q and Q¢ (which is the complement
of the closure of 2, and hence the region outside o)

Step 2 We show that v is harmonic outside 052, and that
Step 3 v has the following limits from the inside and the outside

o dm _ v(@) = —¥(z0) +v(a0), (59)
mali_rgoe’g&f) = +9(z0) + v(zo). (5b)

Step 4 Next we define the operator T : C(9Q) — C(99),
@)@ = [ K@ wws,

We need to show that T indeed maps to C(9€). At the same time, we
will prove that T' is compact.

X
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Step 5 In order to show that (3) always has a solution ¢ € C(09) for given
f € C(09), it suffices by the compact operator theorem to show that
N(~I +T) = {0}. The proof requires several steps. First we realize
that if (~7 + T)¢ = 0 for some ¢, by (5) and the maximum principle for
harmonic functions, u defined by (4) is 0 on Q. Next we show continuity
of Ou/0n through the boundary 0Q. By a partial integration argument,
we show that u should be constan&on Q°. By (5) we conclude that ¢ = 0

(=T on . [T back 0 d

We will work out the arguments of the above points in the following sections.
However, before we proceed it is useful to gather some technical results, which
we will do in step 0.

Step 0
First of all, there is a constant C' such that for all z,y € 09,

[ n, | BT < CliE==g). [ -4 | (6)

To see this, we consider for each 2 € 8 the function ¢ and the radius Ty
as in (1). We cover 99 with the collection of open balls {Br,/a(%)}zecoq. Since
€2 is compact, there is a finite subcover, corresponding to z,...,zN € R3, for
some N € N, say. Define
Ols= i i/4.
imLN'® /
Let |z — y| > 4, then
Ing —ny| <2< 2|z —y|.
If |z — y| < 6, there exists an i € {1,...,N} such that T,y € B, (). As
mentioned before, we can rotate and translate, so that we may assume z' = 0,
and ng: = (0,0,—1). Then the surface can be written locally as the graph of
9", and for z € B, , (),

(g:(cf )(xlv IZ); 95.2 )(2:11“71‘2)5 _1)T
(14 (057 (21,22))% + (98 (@1, 22))2) /2
where g, means the partial derivative of g with respect to zj, j =1,2. As the

right hand side is a smooth function in (21, z3), we find that there is a constant
C" such that

Ny =

|ng —ny| < Cllz - yl,
for all 2,y € B, , (2'). If we take
O 1= max(2/8,C, . .., O,

the inequality (6) holds for all x,y € 99). el
We now define the function h: 9Q x (=1/C,1/C) — RS,

h(z,t) = © + tn,. (7)
Note that h is one-to-one. Indeed, if

x—i—tnz:y—{—tny,

Y
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h(Xo.t)

S
Figure 2: Illustration of the function h as defined in (7), and. of the surface S,.

then
|z —y| = [ty — nal,

which, by (6) implies z = m If we define S; := h(6Q,t), it follows
that S; is a smooth hypersurface as well. Moreover, it encloses a connected set,
which we denote Q;. In other words, S, = 8%.

Finally, choosing & as above, it follows that for some constant C > C and
for any zg € 9, the part of the surface Bs(zo) N 8 can be represented as the
graph of g(*0), with uniform bounds

199 (y1,32)| < C(¥? + 42) (8a)
and
19570 (y1, v2)| + [9559) (91, 42)| < CJy? + v2. (8b)
1 Step1

For ¢ € C(8Q) and z € R® we consider the integral
o) = [ K@uw)ds, ©)

For x ¢ 0N), K(z,y) is bounded uniformly in y € 89, and the integral on the
right hand side of (9) clearly exists. To ensure existence of the integral for
z € 0R, let us try to estimate |K(z,y)|, for z,y € 8. We may by rotating
and translating without loss of generality assume that z = (0,0,0) and n, =
(0,0,—1). In step 0 we saw that there exists a § > 0, and a smooth function
g : R? D Bs(0) — R3, such that

00N Bs(0) = {z € Bs(0)|23 = g(21,22) }.

7~



If |z —y| >4, ;
e L1E=Y)ny| 1 je—y2 1 1 (
IK(JI,!J)|—27F fx—y]3 Sﬁlw—yﬁ_ﬁr—y['

If |z — y| < d, we know that =

(@ =9) - ny| <l =) (ny —n0)| + (2 = y) -
=l@=y) -y —na)l +lgv2)l. e 3:/{1" W 3o/, ) )

For the constant C in step 0 we know that d & x= o

Iny —ng| < Cly — =|,

,g(ylayz)‘SC@(Z_@(/(lL(quL z C“la_\": C l;(—~4a, IL

Then
[z —y) - ny| < 20|z —y|?,
and 1 G
K(z,y)| < = !
K@l < 1=

It follows that there is a constant M such that |K(z,y)| < M/|z —y|, for all
z,y € 9Q. This singularity is integrable, so that the integral defining v(x) exists.
In fact, there exists a constant M such that for all z € 99, and ¥ <4,

| K@ds, < My (10)
80N B, (z)

2 Step 2

We would like to show that v defined by (9) is harmonic and smooth on (89)¢.
If 2o ¢ 09, there exists an 7 > 0 such that Bo,(20) N0 = 0. Then, there exists
a C7 > 0 such that

K (z,y)], Do K (2,9)], |D3K (2, )|, | DEK (z,y)| < Cy
for all z € By(x¢), and y € 9. Hence, for |z| < r, by Taylor’s formula

ve+2)—ofw) - | DL (e, u)v(s)y ) <

Ik

< Clef? /a ()ldy,

for some constant Cy > 0, independent of z. It follows that v is twice differen-
tiable, with

¢ (x#3.) -l (XV

DmK(x,M(y)dy) 242" ( 00

~u(z) - (DK (z,y))z — zT(DiK(m,y))z)¢(y)dy'

Du(z) = . Dy K (z,y)¢(y)dSy,

P
D?v(z) = /an DK (z,y)¢(y)dS,.

ies smoothness of v. Alternatively, smoothness of v can be proven by
arguments similar to the ones that show v is twice differentiable.

.S



3 Step 3

We would now like to compute the boundary values of v. That is, we want to
prove (5), which we restate for convenience

Qazlig:loeﬁgg{f) o —w(l‘O) + ’U(.’L’o), (11)
ea . ¥(7) = +(30) + o(ao). (12)

We will show only that the first limit exists and equals —%(zo) +v(zp). The sec-
ond limit is calculated similarly. In the proof, we will make use of the following
lemma, sometimes referred to as Gauss’ lemma.

Lemma 1.
-2, .’L‘QEQ,
#(zo) = / K(20,y)dS, = { -1, 20 € 69,
g 0, =o€ ().

Proof. First consider the case where zo ¢ (. Define

1 1
®(z,y) = yryrp

the fundamental solution to the Laplace equation in three dimensions. Note
that
1 (z-y) ny L:

=T Py K(z,y).

1
2
Then ®(zo,y) is harmonic in y on a neighborhood of 2, and by partial integra-
tion,

Vy®(z,y) - n,

/ K (z0,y)dS, = 2/ Vy®(zo,y) - ny
an a0
—2 / A, ®(z0 — y)dy = 0.
Q

In case zo € §, given some radius r > 0 small enough, ®(zo,y) is harmonic
in y for y € Q\B,(z0). Applying partial integration again, we find

1 (To—y) n /
K(zg,y)dS, = — —dS, +2 Ay ®(zo,y)dy
o0 - ( 4 y) § 27 8Br(z0) |x0 - y|3 . Q\B,-(.’I:o) 4

(zo—y):n
A—dS,,
|zo — yl® 8

with n denoting the outward unit normal to 8B, (zy), i.e.

_ Y=7%
ly — ol

We can thus calculate the integral and we find

7 W G IO,
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Finally, we treat the case Ty € 002. We may without loss of generality assume
zo = (0,0,0) and n,, = (0,0,-1). Again, consider for  small enough Q\ B, (zy),
on which ®(zo,y) is harmonic in y. Define

Cr 1= O\PB, (a0),

D, := 8B, (z5) N . £
CF
Then

1
/ K(zo,y)dS = —/ y) 3nds + 2/ Ay(I)(IOwy)dyi
c, 2 -y Q\ By (z0)
_ i/ (mo — y) By
2 l-’Co = y|3 Sv
with again
Y —Zo
n= .
ly = zo|
Now,

hm K(:L‘o, dS =/ K.’I)o, )dSy,

r—0

since the integrand on the right-hand side is integrable. On the other hand,
defining (see also Fig. 3)

Er = {2 € 0Br(z0) | 2 > C(2} + 22)}
we have E, C D, C 0B} (o), with B} (zo) = B.(zo) N {z € R3|z3 > 0}.

\U< y
Q{

55(' (“) (Yo 9 I

5 [ Q(of) v

Ce (Ko '0’(
w1 (G
D(&f& NE, (Yo 2l

sTrg - New }@.‘

45y

v
I = t’{o syl
Figure 3: Illustration of the surfaces E, and D, that are used in the last part ! \\E
of the proof of Lemma 1. ( e r
6.
= zl l G twe 4D
T e T2
&=r "smBo
! I‘
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()LQMLJ we also find

lim—l— (2o —y) - n

2827 Jo, Teo—yP v =L

Putting everything together, we find

Gods, =4 | K(zy)ds, = -1.
[ Koty -4 [

©-0

We can use the lemma to write, for z € Q,

v(z) = | K(z,y)v(y)dy
N

= | K(y)@) - v(z0))ds, + / K (z,y)(0)dS,
N N
- / K (@, y) (9(y) — $(20))dS, — 26(z0).
o0
For zy € 09,
w(zo) = /a Klzon)vw)dy
= [ K(@o,0)((y) - ¥(z0))dS, + / K (20, 5)(z0)dS,
JOQ o0
- /a K (@0.9)(0(y) — ¥(z0))dS, ~ p(zo).

Consequently,

v(a) = v(eo) +(e0) = [ [K(@,y) — K(ao,)]0) - wlao)ds,
= L(2) + 1, (a)

where v > 0 and

hie)= [ K (2,) — K (20, )] (4(y) — ¥(0))dS,,
QN B. (z0)
Jy(z) = /8 o K@) = K@) (0(0) — p(z0))dS),
Now

1L, (2)] < w(y) /a o (@0 = K@, )lds, < Couly),

with C5 > 0 some constant and w the modulus of continuity of 1. Since K (z,y)
is smooth in y for y ¢ B, (x¢), and 1 is bounded,

[73(@)] < CPIYlloolz — o,

ol



with C(v) a constant depending on . We thus find,

|v(z) - U(I%) +9(z0)] < CONNYllsolz ~ o] + Caw(v).

\W(
This shows the resugt, since we can first choose v to make the second term
arbitrarily small, and then choose z € Q close enough to zy to make the first
term arbitrarily small.

ke Ak G ahowt @ Lenlansng ohow Aot of V) defored by @)
4 Step 4 Jom xe MA\DL, Men Uiy conbinuss
We define the operator T : C(99) — C(09) by w Ji 0"‘/4“'[90 w A

"nl’wr{;(")

For z1 and 25 on 99, |21 — 25| < v < 4, for some v and with § as in step 0,

(TY)(z) = - K(z,y)y(y)dS,, =€ oQ.

(T¥) (1) — (T)(22)] < /a I (ny) - Ko p)ll()las,
< / K (21,) — K (22,9)|[(»)]dS,
ONB. (z1)

2 / K (@1,9) — K (22, 9)|[0()]dS,
00NBE (21)

=: 2M(29)|[¥]loe + C(7)|21 = Z2|[|%|00,

with M a constant defined in (10), and C(7) a constant depending on . There-
fore, the image of a bounded set under T is equicontinuous (and in particular,
T maps to C'(052)). Moreover, T is a bounded operator, since

IT($)()] < /a K@ IS, < Cal o

for some constant Cy > 0. The above inequality also shows that the image of a
bounded set under T is equibounded. By the Arzela-Ascoli theorem it follows
that 7" is a compact operator.

5 Step 5

In order to show that the integral equation (3) always has a solution, it suffices
to show that N(—I + T) = {0}. Let, therefore, ¢ € C(8Q) be such that
(=1 +T)¢p =0, and let u be such that

u@) = [ K@y)owdy
on
Then, by the previous steps, u is harmonic inside Q, and

s, o u(2) = ~@(z0) + u(z0) = ~¢(0) + (T¢)(z0) = 0.

By the maximum principle, u = 0 on .
A crucial step in our argument is proving the following claim.

a
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Claim 1. (The normal derivative is continuous through the boundary) Htoids- We ‘wwf

Shat
Ou(zo +tney) | Bu(zo + tng,) g
540 ot t=s ot t=—3 =

as $358, uniformly in z.

Proof. As usual, we may assume without loss of generality that zo = (0,0, 0),
and that ng, = (0,0,—1). We take a function X ¢ [0,00) — [0,1], smooth,
decreasing, such that x(r)=1forr <6/3, x=0forr> 26/3, and [x'| < 6/8,
with ¢ from step 0. We write
¢(v) = (¢(y) - B(z0)) + p(z0)
= (8(y) = é(z0))x(Iz0 — yI) + (B(y) = $(z0))(1 — x(|zo — yl)) + (o)
=: ¢1(y) + d2(y) + ¢(z0),
with 61(y) = (6(y)—¢(20))x(|zo~y|) and ¢s(y) = (8(¥) —(20)) (1 -x(Jzo—y])).

Both are uniformly continuous, and ¢; is supported on Bas/3(x0) N 8, while
¢2 vanishes on Bj/3(zo) N Q. Now
1 (To +tng, —y) ny

C" M“‘&, o 8q  |ZTo+tng, —y[?

is smooth in ¢, for all}t, while

— ds,
2m /an |zo + tng, — y|3 #lz0)dS, .

b2 (y)dSy

is constant in ¢ fof t > 0 and)t < 0/ It suffices therefore to prove the claim for
@ instead of u, where

(z) = /8 K@)y,

Close to g, we write the surface as a graph of a function g : B; — R, with
the properties as in step 0. The volume element dS, becomes

dSy = /1 + gk + g2,dy.dys,

and the normal at y is
n, = —Gv12 9, 1)
y =
V1t +9,
In that case,

1 (o +tng, —y) - ny
i _— ds,
W(zo + tng,) v /an Py — $1(y)dS,

. —Y19y, — Y29y, + (g +1)

T2 Joq (VB + U3+ (t+9)2)3?

We can calculate the derivative with respect to ¢ by differentiating under the
integral (as we have seen in step 2),

2
Oi(zo + tng,) _/ dind vi+yi+(t+yg)
T = B, dyl y2¢(yl,y2)[(y%+y§+(t+g)2)5/2
_ 3(=Y19y;, — Yogy, + (t+9))(¢ +9)]
(v} +v3 + (t+g)?)5/2
=Il(t)+12(t)a '

#1(y1,v2, 9(y1,¥2))dy1dys.

ol



where .
o(y1,92) = é1(y1, 92, 9(y1,92)),
and

/ dy1dy26(y1, y2)
Bs (U7 + 43 + (t +g)?

/ dyrdy26(y1, yo)
Bs (Y + 3+ (t+g)2)5/2

573 [V 03— 26 — dtg + 34110y, + 1203,

[— 29° + 39(y19y, + 9291/2)]

From step 0 it immediately follows that

| — 2% + 39(y19y, + Y205.)| < 8max(1,C?)(y? + y2)2.

Consequently,
[I5(t) — I2(0)| — 0, t— 0,

where the convergence is uniform in zg. It then also follows that
{Ig(t)—[g(—t” — 0, t—0,

uniformly in zg.
We will now consider the term I;(¢). We substitute tw; = y;. Then

22 ~ w% - w% —2—4g/t + 3(wi1gy, + WaGy, )

Ii(t) = — dwidwad(twy, tw ~
=, e ) e Gt o

We factor out (w? + w3 + 1+ g2/t?) in the denominator

I(t) = 1 / dwldw2$(tur1,tw2)(wf +wj —2— - 49/t + 3(@;};951 + 11)2gy2)
" i (W + 0l + 14 62 /2)/ (1 + Gt

1 ¢(t'LU1,t'w2)

= —/ d’lUld’U)Q 5 5 B 2 5 2 2g/t
t Bs/i (w1+w2+1+g /t / 1+w +w? +1+g/t2

[—2+wf+w%—|—F(t,w1,wg)],

where we have defined

_4g(twl, twsy)

F(t,wy,wy) = r

+ 3 (w1gy, (twy, twa) + wagy, (fw:, tws)) .
By step 0 it follows that
|F(t, w1, w2)| < 10C|t[(w? + w3)

Also define G(¢t, w1, ws) such that

—5/2
2g/t
1 - =14+ G(t, w1, ws).
(- srpareem) i

Then, again by step 0, for ¢t small enough,

|G(t, w1, ws)| < 10C.

24



Thus,

5 - 2 2
1-1 (S) - l/ dwld'u)2 ¢(8w11 3w2)[ 2+ w; + ’UJ§ + F(S,‘wl, w2)](1 - G(s, wy, ’U)Q))
8 JBy, (wl t+wi+1 +92/32)5/2

For t = —s,

2
Ii(-s) = s dwydw, Plswy, swa) (=2 + wf + wd + F(—s, ~wy, ~wa)|(1+ G(=s, —wy, —wy))
By, (W} +w} +1+ g2/52)5/2

We compare I)(s) and I;(-s) for s > 0,

[1(s) = I(—s)| < * / sy Cplw1 )t +ugf o1 )
S

Bs/, ) (w% + w% + 1)5/4
Now define
2 2
+ w
E(s) =/ o 2 dwydw,,
Baji\Bs, s (WE+ w3+ 1)5/2 o

then E(s) — 0 as s — 0. We have the bound
[11(8) = In(=s)| < Cs(w(v/5) + [|BllooE(s)),

with w the modulus of continuity of ¢, and Cs > 0 a constant that does not
depend on z. a

Recall from step 0 the definitions of the domain ¢ and the smooth hyper-

surface S;,
Bﬂt = St = h(GQ, t)

For some radius R big enough and s < é,

/ |Vu|2=/ u@+/ u%+/ ulu
Br\, 9Br On  Jsn, On  Jpa\q,

= i oy Oulh(y,t)
= /03’1 o —/m U(h(y’s))Tlt___aJ,(y)dSy,

where J,(y) is the Jacobian, of the transformation z = h(y, s), that is, for all
p € C=(R?),

/ o(2)dS, = / o (h(y, $))s(4)dS,
80, N

t Js(y) converges to 1 as s — 0 uniformly in y. By the form of the

[PV

solution,

U(I) T 50 K(xay)¢(y)ds‘u’
it is clear that the integral over 8Bg vanishes in the limit R — 0. In the limit
t — 0, the integral over 92, vanishes, too, since by the claim and the facts that
u =0 on {2, and J,(y) converges to 1 as s — 0 uniformly in y,




&

Ol & Uit <1 wuy x t~ ao

uniformly in zq. It follows that wl ol ﬂtwc ulxy = o

tn \/\“
/ [Vul? = 0.
RB\Q -
o I Mo Jotloee, That TL(Y";U“‘aJ,M
Hence, u is constant o €2°. By (5), ¢-is-a-eonstant—But-thenw=-0-on- Q%50

¢ is in fact equal to 0.. Ut aefome -

Question Mo wethnd tied above a called Lo doylhia /W [\ﬂ“‘h”"() un efheel

Could you solve the Dirichlet problem in this fashion, but with a single layer
potential? For what problem would a single layer potential be suited?
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