= \text{ran} T. \quad \text{Let } y' \text{ be an extension of } l \text{ to } Y.

Then for all } x \in X, \quad \langle T' y', x \rangle = \langle y', Tx \rangle

= \mathcal{L}(Tx) = \langle x', x \rangle, \quad \text{and so } T'y' = x' \text{ if } x' \in \text{ran} T'.

This completes the proof of Banach's Theorem (45.3).

\underline{Lecture 5} \quad \underline{Remark 57.1:} \quad \text{Suppose } T \in \mathcal{L}(X, X'), \text{ and hence } T' \in \mathcal{L}(Y, X'),

\text{has closed range.} \quad \text{It is interesting to apply (46.1) to } T'. \quad \text{We have}

\begin{equation}
\text{ran } T' = \{ x' \in X' : \langle x'', x' \rangle = 0 \quad \forall x'' \in \ker T' \}
\end{equation}

But (46.2) also applies, so we also have

\begin{equation}
\text{ran } T' = \{ x' \in X' : \langle x', x \rangle = 0 \quad \forall x \in \ker T' \}
\end{equation}

Using the injection \(\varphi : X \to X'' \) mapping \(x \mapsto x'' = \varphi(x) \)

\(x''(x') = x'(x) \) (see (26.31)), we see that

\[\langle x'', x' \rangle = 0 \]

for all \(x'' \in \ker T'' \), \(y' \) and only if

\[\langle x'', x' \rangle = 0 \]

for all \(x'' \in \ker T'' \cap \ker \varphi \). But in general \(T' \notin \ker T'' \).
and so the conclusion is somewhat surprising.

Let Y be a closed linear subspace of a Banach space X. We say that closed linear subspace Y' of X is a complement of Y in X if X is a direct sum of Y and Y', i.e., any $x \in X$ can be expressed as a unique sum.

\[(58.1) \quad x = u + v \quad \text{where } u \in Y \text{ and } v \in Y'.\]

Note that uniqueness is equivalent to $Y \cap Y' = \{0\}$.

Complements Y' of Y, if they exist, are not unique.

For example, if $X = \mathbb{R}^2$ and $Y = \{(x, y) : x \in \mathbb{R}\}$, then

$Y' = \{(x, 0) : x \in \mathbb{R}\}$ and $Y'' = \{(0, y) : y \in \mathbb{R}\}$

are both complements of Y in X. (See also Instr. Set 11.)

By Theorem 13.2, every closed subspace Y of a Hilbert space H has a complement, viz. $Y' = Y^\perp$. But in general a Banach space may have subspaces that
cannot be complemented. For example in [R. J. Phillips, On
linear transformations, Transactions of Amer. Math. Society, 48 (1950), 516-554], Phillips showed that \(c_0 = \{ x = \{ x_n \} : x_n \to 0 \} \) is a subspace in \(L^\infty \) that cannot be
complemented (see Problem set #4).

A linear operator \(P : X \to X \) is a projection if \(P^2 = P \).

If \(Y \) and \(Y' \) are complementary closed subspaces in \(X \),
\(X = Y \oplus Y' \). Then the maps taking \(x = u + v \) to \(u \) and
\(v \) give rise to two bounded complementary projections.

\[(59.1) \quad x \mapsto u = Px, \quad x \mapsto v = Qx\]

\[(59.2) \quad P^2 = P, \quad Q^2 = 0, \quad PQ = QP = 0, \quad P + Q = I\]

The fact that \(P \) and \(Q \) are bounded follows from
the open mapping theorem as the map

\[\langle y, y' \rangle \mapsto y + y' \]

is a continuous bijection from the Banach space
\[Y \times Y' = \{ (y, y') : y \in Y, y' \in Y' \} \]

\[\| (y, y') \| = \| y \| + \| y' \| \]

onto \(X \). Conversely, if \(P \) and \(Q \) are bounded complementary projections in \(X \) as in (59.2), then

\[(60.1) \quad Y = \text{ran} P \quad \text{and} \quad Y' = \text{ran} Q \]

are complementary subspaces in \(X \) (Exercise).

If \(Y \) is a linear subspace of \(X \) then the codimension of \(Y \) is defined as

\[(60.2) \quad \text{codim}(Y) = \dim(X/Y) \]

Proposition 60.3

Suppose \(Y \) is a closed subspace of a Banach space \(X \).

Then if \(\dim Y < \infty \) or \(\text{codim} Y < \infty \), then \(Y \) can be complemented.

Proof: Suppose \(\dim Y < \infty \) and let \(x_1, \ldots, x_n \) be a
Let Y, $n = \dim Y$. For $i = 1, \ldots, n$, set

$$l_i \left(\sum_{i=1}^{n} d_i x_i \right) = d_i$$

Each l_i is bounded on Y (why?), and hence can be extended to a bounded linear functional L_i on X, $i = 1, \ldots, n$. Let $Y' = \{ x \in X : L_i(x) = 0 \text{ for each } i = 1, \ldots, n \}$.

Now Y' complements Y. Indeed Y' is clearly closed and if $x \in X$, set $\tilde{x} = x - \sum_{i=1}^{n} L_i(x) x_i$. Then

$$L_i(\tilde{x}) = L_i(x) - L_i(x) = 0$$

for $\tilde{x} \in Y'$. Thus $x = \tilde{x} + \sum_{i=1}^{n} L_i(x) x_i \in Y \oplus Y'$.

Finally if $x \in Y \cap Y'$, then $x = \sum_{i=1}^{n} d_i x_i$ and

$$L_i(x) = d_i = 0 \Rightarrow x = 0,$$ no That the sum is direct.

Now suppose $\codim Y = \dim X / Y = n < \infty$. Let

$$x_i = x_i + y_i, \ i = 1, \ldots, n,$$ be a basis for X / Y. Then

$y \in X$, there $\exists d_1, \ldots, d_n$ such that $x = d_1 [x_1] + \cdots + d_n [x_n]$.\]
and so \(x = x_1 x_1 + \ldots + x_n x_n \in Y \). It follows that any \(x \in X \) can be written as \(u + v \) where \(u \in Y \) and \(v \in Y' = \text{span} \{ x_1, \ldots, x_n \} = \langle x_1, \ldots, x_n \rangle \).

If \(x \in Y \cap Y' \), then \(x = d_1 x_1 + \ldots + d_n x_n \) for some \(d_1, \ldots, d_n \in C \) and no \(x_1^* x_1 + \ldots + x_n^* x_n = 0 \) which entails \(d_1 = \ldots = d_n = 0 \) and hence \(x = 0 \). As \(Y' \) is automatically closed, it follows that \(Y' \) complements \(Y \). \(\square \)

Let \(T \in \mathcal{L}(X) \). We say that a scalar \(\lambda \in C \) lies in the spectrum of \(T \), denoted \(\sigma(T) \), if \(T - \lambda = T - \lambda I \) is not a bijection from \(X \) onto \(X \). The complement \(\Delta \setminus \sigma(T) \) of \(\sigma(T) \) is called the resolvent set of \(T \) and is denoted by \(\rho(T) \). Thus for each \(\lambda \in \rho(T) \), \(T - \lambda \) is a bijection with inverse \(\frac{1}{T - \lambda} = (T - \lambda)^{-1} \) which is necessarily bounded, by the open mapping theorem. For \(\lambda, \lambda' \in \rho(T) \) one has
The resolvent identity

\[(63.1) \quad \frac{1}{T - \lambda} = \frac{1}{T - \lambda'} = (\lambda - \lambda') \cdot \frac{1}{T - \lambda} = (\lambda - \lambda') \cdot \frac{1}{T - \lambda} \]

In particular, \(\frac{1}{T - \lambda} \) and \(\frac{1}{T - \lambda'} \) commute. If \(\text{ker}(T - \lambda) \neq \{0\} \)

Then \(\lambda \) is an eigenvalue of \(T \) and any vector \(u \neq 0 \) in \(\text{ker}(T - \lambda) \), \(Tu = \lambda u \), is called an eigenvector of \(T \).

The dimension of \(\text{ker}(T - \lambda) \) is called the geometric multiplicity of \(\lambda \). Recall that for a matrix \(M \),

\[\det(M - \lambda I) = (\lambda - 3)^p \phi(3), \quad \phi(3) \neq 0, \quad p \geq 1, \]

then \(\lambda \) is an eigenvalue of \(M \) and \(p \) is its algebraic multiplicity.

In general, the algebraic multiplicity of an eigenvalue is greater or equal to its geometric multiplicity. The algebraic multiplicity of eigenvalues of \(T \) operators will be considered later.
Theorem 64.1. Let $T \in \mathcal{L}(X)$. Then

1. $\rho(T)$ is an open set and $\sigma(T)$ is a closed set.
2. The map $\lambda \mapsto (T-\lambda)^{-1}$ is analytic in $\rho(T)$.
3. $\sigma(T)$ is non-empty.
4. $\sigma(T) = \sigma(T')$ and $\rho(T) = \rho(T')$.

Remark 64.5. Property (4) generalizes the fact that if A is a square matrix, $\det(\lambda I - A) = \det(\lambda' I - A')$.

Proof of Theorem 64.1. If $\sigma(T) = \emptyset$, then T is invertible for all $\lambda \in \mathbb{C}$. Hence, for any $x \in X'$, $x \in X$, the function

$$(1 - (\lambda - \lambda') (T-\lambda)^{-1})^{-1}$$

exists, by the Neumann series, $(1 - V)^{-1} = \sum_{k=0}^{\infty} V^k$ for $\|V\| < 1$.

Set $R_{\lambda, \lambda'} = (1 - (\lambda - \lambda') (T-\lambda)^{-1})^{-1} (T-\lambda)^{-1} \in \mathcal{L}(X)$.

Then $(T-\lambda) R_{\lambda, \lambda'} = (T-\lambda Y (T-\lambda)')^{-1} (T-\lambda Y (T-\lambda)')^{-1}$

$$= (1 - (\lambda - \lambda') (T-\lambda)^{-1})^{-1} (1 - (\lambda - \lambda') (T-\lambda)^{-1})^{-1} = 1$$
Similarly \(R_{\lambda', \lambda} (T - \lambda') = I \). Hence \(\lambda' \in \rho(T) \). Thus \(\rho(T) \) is open, and hence \(\sigma(T) \) is closed. If \(\lambda \in \rho(T) \) and \(|\lambda' - \lambda| \) is small, then again by the Neumann series,

\[
(T - \lambda')^{-1} = R_{\lambda, \lambda'} = (I - (\lambda' - \lambda)(T - \lambda')^{-1})^{-1} = \sum_{k=0}^{\infty} (T - \lambda)^{-k} (\lambda' - \lambda)^k
\]

from which we conclude that \(\lambda \mapsto (T - \lambda)^{-1} \) is analytic.

If \(\sigma(T) = \emptyset \), then \(T - \lambda \) is invertible, and hence analytic, for all \(\lambda \in \mathbb{C} \). Hence for any \(x' \in X, x \in X \), the function

\[
\Phi_{x, x'}(\lambda) = \langle x', \frac{1}{T - \lambda} x \rangle
\]

is entire. However, for \(|\lambda| > \|T\| \), one can expand \((T - \lambda)^{-1} \) in a Neumann series

\[
(T - \lambda)^{-1} = -\frac{1}{\lambda} \sum_{n=0}^{\infty} \frac{T^n}{\lambda^n}
\]

and so

\[
\| (T - \lambda)^{-1} \| \leq \frac{1}{\| T \|} \frac{1}{|\lambda|} \to 0 \quad \text{as} \quad |\lambda| \to \infty.
\]
Hence \(f_{x,x}(x) \to 0 \) as \(x \to 0 \), and by Liouville's Theorem, \(f_{x,x}(x) = \langle x', (T-\lambda)^{-1}x' \rangle = 0 \). Thus, by (24.1), we must have \((T-\lambda)^{-1}x = 0\) for all \(x \) and \(\lambda \).

Finally (4) follows from the Theorem 41.2, \((T-\lambda)\) is a bijection \(\iff T-\lambda = (T-\lambda)^{-1} \),

We now begin the study of compact operators. Let

\(T \in \mathcal{L}(X,Y) \) for a pair of Banach spaces \(X \) and \(Y \).

Then \(T \) is compact if it takes bounded sets to pre-

compact sets. Thus if \(\{x_n\} \) is bounded in \(X \), \(\|x_n\| \leq c \),

then \(\{T x_n\} \) has a convergent subsequence. The basic theory of compact operators is due to F. Riesz and T. Schauder and is known as Riesz-Schauder theory. We denote the
space of compact operators $T \in \mathcal{L}(X,Y)$ by $K(X,Y)$ and $K(X)$ if $X = Y$.

The following result is immediate.

Theorem 67.1: Let W, X, Y, Z be Banach spaces. Then

1. $s, T \in K(X,Y) \implies \lambda s + \alpha T \in K(X,Y)$ for $\lambda, \alpha \in \mathbb{C}$

2. $C \in \mathcal{L}(W,X)$, $B \in K(X,Y)$, $A \in \mathcal{L}(Y,Z)$

 $BC \in K(W,Y)$ and $ABC \in K(X,Z)$

3. $K(X,Y)$ is a closed subset of $\mathcal{L}(X,Y)$. Thus if $T_n \in K(X,Y)$, $T \in \mathcal{L}(X,Y)$ and $\|T_n - T\| \to 0$ as $n \to \infty$,

 Then $T \in K(X,Y)$

Proof: Exercise \Box

Theorem 67.1 implies, in particular, that $K(X)$ is a closed ideal in $\mathcal{L}(X)$. An operator $T \in \mathcal{L}(W,X)$ is finite rank if
dim ran $T < \infty$. Such operators can be represented in the form (exercise)

\[(68.1) \quad Tx = \sum_{i=1}^{n} x_i'(x)y_i, \quad x \in X\]

for some independent set of vectors $y_i \in Y$, $i = 1, \ldots, n$,

$n = \dim (\text{ran } T)$, and some independent set of bounded linear functionals $x_i' \in X'$, $i = 1, \ldots, n$. Finite rank operators are clearly compact (why?). In Hilbert space, every compact operator $T \in \mathcal{K}(H)$ is the norm limit of finite rank operators, $\| T_n - T \| \to 0$ as $n \to \infty$, T_n finite rank. (See Reed-Simon, e.g.) This is not true in general in Banach space.

Theorem 68.2 (Schauder)

An operator $T \in \mathcal{L}(X, X)$ is compact if and only if $T' \in \mathcal{L}(Y, Y')$ is compact.

Proof: Recall the Arzela-Ascoli Theorem: Let S be a compact metric space and let $C(S)$ denote its B-space of continuous functions on S with norm $\| x \| = \sup_{s \in S} |x(s)|$.

\[\text{(see [Yosida].)}\]