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1 Mechanical energy

We recall the two conservation laws from the first semester:
Conservation of mass:
Ip
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Conservation of momentum:
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Here 0;; are the components of the viscous stress tensor: !
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We now want to use these results to compute the rate of change of total
kinetic energy within a fixed fluid volume V. We see that
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where S is the boundary of V' and @ is the total viscous dissipation in V:
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You will find that Landau and Lifshitz allow a deviation from the Stokes relation. Recall
that this relation makes the trace of the non-pressure part of the stress tensor (the deviatoric
stress) zero. This deviation is accomplished by adding a term p/d;;V - u to the stress tensor,
where 1/ is called the second viscosity. For simplicity, and sionce the exact form is not material
to the problems we shall study, we neglect this second viscosity in the present notes. However
for applications to real gases it should be retained as the Stokes relation does not hold for
many gases.



We note from (4) that the contributions in order come from the work done by
body forces, the work done by pressure in compression, viscous heating, flux of
kinetic energy through S, and work done by stresses on S. We refer to (4) as
the mechanical energy equation, since we have use only conservation of mass
and momentum.

To put this expression into a different form we now complete the fluid equa-
tions by assuming a barotropic fluid, p = p(p). Then
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We now define g(p) by
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Using this in (4) we obtain

d
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where )
FE = p(e + §u2) (14)

Note that if 4 = 0 and F; = 0 then (13) reduces to a conservation law of the
form
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We note that E should have the meaning of energy, and we shall refer to e as
the internal energy of the fluid (per unit mass). Then (13) can be viewed as
as expression of the first law of thermodynamics AE = AQ — W, where AE
is the change of energy of an isolated system (not flux of energy through the
boundary), AQ is the heat added to the system, and W is the work done by the
system.

The form of (13) can however be used as a model for formulating a more
general energy equation, and we shall do this after first reviewing some of the
basic concepts of reversible thermodynamics.

2 Elements of classical thermodynamics

Thermodynamics deals with transformations of energy within an isolated sys-
tem. These transformations are determined by thermodynamic variables. These
come in two types: Ezxtensive variables are proportional to the amount of ma-
terial involved. Examples are internal energy, entropy, heat. Intensive variables
are not proportional to quantity. Examples are pressure, density, temperature.

We have just introduced to new scalar field, the absolute temperaturel’, and
the specific entropy s. We shall also make use of specific volume v, defined by
v=1/p.

We now discuss the thermodynamics of gases. In general we shall assume
the existence of an equation of state of the gas, connecting p, p, T. An important
example is the equation of state of an ideal or perfect gas, defined by

pv = RT. (16)

Here R is a constant associated with the particular gas. In general all thermo-
dynamic variables are determined by p, p and T. With an equation of state, in
principle we can regard any variable as a function of two independent variables.

We can now view our thermodynamic system as a small volume of gas which
can do work by changing volume, can absorb and give off heat, and can change
its internal energy. The first law then takes the differential form

dQ = de + pdv. (17)

It is important to understand that we are considering here small changes which
take place in such a way that irreversible dissipative processes are not present.
For example, when a volume changes the gas has some velocity, and there could
be resulting viscous dissipation. W are assuming that the operations are per-
formed so that such effects are negligible. We then say that the system is
reversible. If the changes are such that dQQ = 0, we say that the system is
adiabatic.

We define the following specific heats of the gas: The specific heat at constant
pressure is defined by
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Note that for an ideal gas p(g—;) =R.
P

The specific heat an constant volume is defined by

= g_g dv=0 (g_;)v' (19)

We will make use of these presently.
The second law of thermodynamics for reversible systems establishes the
existence of the thermodynamics variable s, the specific entropy, such that

dQ = Tds. (20)
Thus we have the basic thermodynamic relation
Tds = de + pdv. (21)

We know make use of (21) to establish an important property of an ideal
gas, namely that its internal energy is a function of 7" alone. To see this, note

from (21) that
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Thus e is a function of s — Rlnwv alone. Then, by the first of (22), T = €'(s —
Rlnv), implying s — Rlnv is a function of T alone, and therefore e is also a
function of T' alone. Thus the derivative of e with respect to T' at constant

volume is the same as the derivative at constant pressure. By the definition of
the specific heats, we have

Thus

cp— v = R. (24)

For an ideal gas it then follows that c, and ¢, differ by a constant. If both
specific heats are constants, so that e = ¢, T, it is customary to define that ratio

Y =cp/Cy. (25)

For air v is about 1.4.
The case of constant specific heats gives rise to a useful model gas. Indeed

we then have T J
v
ds =cy—+ R—. 26
ST + dv (26)
Note that here the right-hand side explicitly verifies the existence of the differ-
ential ds. Using the equation of state of an ideal gas, the last equation may be
integrated to obtain

p=k(s)p", k(s) = Ke*/*, (27)

where K is a constant. The relation p = kp? defines a polytropic gas.



3 The energy equation

The fundamental variables of compressible fluid mechanics of ideal gases are
u, p,p, . We have three of momentum equations, one conservation of mass
equations, and an equation of state. We need one more scalar equation to
complete the system, and this will be an equation of conservation of energy.
Guided by the mechanical energy equation, we are led to introduce the total
energy per unit mass as e+ %uQ = FE/p, and express energy conservation by the
following relation:

dt Jy s s v s

We have on the right the working of body and surface forces and the heat flux
to the system. The latter is based upon the assumption of Fick’s law of heat
condition, stating that heat flux is proportional to the gradient of temperature.
We have introduced A as the factor of proportionality. Given that heat flows
from higher to lower temperature, A\ as defined is a positive function, most often
of p,T.

We now use (4) to eliminate some of the terms involving kinetic energy. Note
the main idea here. Once we recognize that the energy of the fluid involves both
kinetic and internal parts, we are prepared to write the first law as above. Then
we make use of (4) to move to a more “thermodynamic” formulation. Proceeding
we see easily that (28) becomes
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This implies the local equation
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Using T'ds = de+pdv and the equation of conservation of mass, the last equation

may be written
Ds

T D = V- AVT + ¢. (31)
This is immediately recognizable as having on the right precisely the heat inputs
associated with changes of entropy.

There are other forms taken by the energy equation in addition to (30)
and (31). These are easiest to derive using Maxwell’s relations. To get each
such relation we exhibit a principle function and from it obtain a differentiation
identity, by using T'ds = de + pdv in a form exhibiting the principle function.
For example if e is the principle function, then

(5:).=7 (5:).=» @)



Then the Maxwell relation is obtained by cross differentiation:
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We define the next principle function by h = e + pv, the specific enthalpy.
Then T'ds = dh — vdp. Thus
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The principle function and the corresponding Maxwell relation in the two re-
maining cases are:
The free energy F' = e — T's, yielding

giving the relation

(). = G, ()
The free enthalpy G = h — T's, yielding the relation
(g_;)T:_(g_;)p' (37)

We illustrate the use of these relations by noting that
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where we have used (37). Now for a perfect gas (g—%) = R/p, so that (31) may
P
be written DT D
p = .
P ™ D = V- AVT + ¢. (39)

In particular if ¢,, A are known functions of temperature say, then we have with
the addition of (39)a closed system of six equations for u, p, p, T

4 Some basic relations for the non dissipative
case pu=A=0
In these case local conservation of energy may be written

%_f+v.(uE):u~F—V~(up). (40)



Using conservation of mass we have
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If now the flow is steady, and F = —pV W, then we obtain a Bernoulli equation
in the form )
H=e+ §u2 +2 40 = constant (42)
p

on streamlines of the flow.
To see how H changes from streamline to streamline in steady flow, note
that

dH:d(%uQ—i-h—i-\Il) :d(%uu\y) + Tds + vdp, (43)

so that we may write
1,4 1
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But in steady flow with 4 = 0 we have pu-Vu+ Vp = —pVV¥, or
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where w = V X u is the vorticity vector. Using the last equation in (44) we

obtain Crocco’s relation:

VH -TVs=uxw. (46)

A flow in which Ds/Dt = 0 is called isentropic. From (31) we see that
© = A = 0 implies isentropic flow. If in addition s is constant throughout space,
the flow is said to be homentropic. Wee see from (46) that in homentropic flow
we have

VH =u X w. (47)

Note also that in homentropic flow the Bernoulli relation (42) becomes (since
dh = vdp)

2
1
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on streamlines. here 9
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is the speed of sound in the gas.



4.1 Kelvin’s theorem in a compressible medium
Following the calculation of the rate of change of circulation which we carried
out in the incompressible case, consider the circulation integral over a material

contour C: p p 9
£ u~dx:—7§ u- Zda, (50)
dt C(t) dt C(t) 80[

where « is a Lagrangian parameter for the curve. then
d D
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Using Du/Dt = —Vp/p — VU, we get after disposing of perfect differentials,
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Here S is any oriented surface spanning C'. In a perfect gas, T'ds = ¢,dT + pdv,
so that
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4.2 Examples

We now give a brief summary of two examples of systems of compressible flow
equations of practical importance. We first consider the equations of acoustics.
This is the theory of sound propagation. The disturbances of the air are so small
that viscous and heat conduction effects may be neglected to first approxima-
tion, and the flow taken as homentropic. Since disturbances are small, we write
p=po+p,p=po+p,u=uwhere subscript “0” denotes constant ambient
conditions. If the ambient speed of sound is

(50)
8[) s
we assume p'/po,p’/po ||u’|/co are all small. Also we see that p’ &~ c3p’. With
no body force, the mass and momentum equations give us
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here we have neglected terms quadratic in primed quantities. Thus we obtain
acoustics as a linearization of the compressible flow equations about a homoge-
neous ambient gas at rest.



Combining (56) we obtain

82 / !
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Thus we obtazin the wave equation for the flow perturbations. If sound waves
arise from still air, Kelvin’s theorem guaratees that u’ = V¢, where ¢ will also
satisfy the wave equation, with

r_ 2 /7_i8_¢
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The second example of compressible flow is 2D steady isentropic flow of a
polytropic gas with 4t = A = ¥ = 0. Then

1
u-Vu+ -Vp=0,V-(pu) =0. (59)
P
Let u = (u,v), ¢*> = u? 4+ v2. In this case the Bernoulli relation hold in the form
1 d
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on streamlines. For a polytropic gas we have
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Now we have, in component form

c? c?
Uty + vuy + ;pm =0, uvg + vvy + ;py =0, (62)

and
Ug + vy +u(pz/p) +v(py/p) =0 (63)

Substituting for the rho terms using (62), we obtain
(c® —u®)uy + (¢ — v*)v, — 2uv(u, +v,) = 0. (64)

If now we assume irrotational flow, v, = u,, so that (u,v) = (¢, ¢y), then we
have the system

(C2 - (b?c)(bmc + (C2 - (b;)(byy - 2¢m¢yv2¢ =0, (65)

2
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5 The theory of sound

The study of acoustics is of interest as the fundamental problem of linearized
gas dynamics. we have seen that the wave equation results. In the present
section we drop the subscript “0” and write

0?¢ B

5 AV32p =0, (67)

where c is a constant phase speed of sound waves.

We first consider the one-dimensional case, and the initial-value problem on
—00 < & < 4o00. The natural initial conditions are for the gas velocity and the
pressure or density, implying that both ¢ and ¢; should be supplied initially.
Thus the problem is formulated as follows:

B0 _ 2070 _
ot? Ox?

The general solution is easily seen to have the form
¢=F(zx—ct)+ G(x+ ct), (69)

using the initial conditions to solve for F, G we obtain easily D’Alembert’s so-
lution:

N~

1 x+ct
oz, t) = =[f(x — ct) + flx +ct)] + %/ g(s)ds. (70)

—ct

In the (x, t) plane, a given point (g, tp) in ¢ > 0 in influenced only by the initial
data on that interval of the z-axis lying between the points of intersection with
the axis of the two lines x — ¢ = £c(t — to). This interval is called the domain
of dependence of (xg,1p). Conversely a given point (xo, ) in t > 0 can influence
on the point with the wedge bounded by the two lines x — xg = tc(t — to) with
t —tg > 0. This wedge is called the range of influence of (zg,tp). These lines
are also known as the characteristics through the point (zo, to).

5.1 The fundamental solution in 3D

We first note that the three dimensions, under the condition of spherical sym-
metry, the wave equation has the form

@_Cz(@ 23_@5):0_

ot? orz ' ror (1)

here 72 = 22 + y? + 22. Note that we can rewrite this as

(1)t — (rd)rr = 0, (72)

Thus we can reduce the 3D problem to the 1D problem if the symmetry holds.
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Now we are interested in solving the 3D wave equation with a distribution
as a forcing function, an with null initial conditions. In particular we seek the
solution of

bi — AV2p = 5(x)d(t), (73)

with ¢(x,0—) = ¢+(x,0—) = 0. Since the 3D delta function imposes no devia-
tion from spherical symmetry, we assume this symmetry and solve the problem
as a 1D problem. When t > 0 we see from the 1D problem that

6= %[F(t—r/c) G+ 7)) (74)

(The change r — ¢t to t — r/c is immaterial but will be convenient here.) Now
the term in G represents “incoming” signals propagating toward the origin from
00. Such wave are unphysical in the present case. Think of the delta function
a disturbance localized in space and time, like a firecracker set off at the origin
and at ¢t = 0. It should produce only outgoing signals. So we set G = 0. Also,
near the origin F(t — r/c) = F(t), so the d(x)d(¢) distribution would result,
using VZ(1/r) = —4md(x), provided

F(t—r/c)= 5t —r/c). (75)

47c?
Another way to be this is to integrate the left-hand side of (73) over the ball
r < €, use the divergence theorem, and let € — 0.

So we define the fundamental solution of the 3D wave equation by

B(x, ) = ——5(t— /). (76)

4mccy

5.2 The bursting balloon problem

To illustrate solution in three dimensions consider the following initial conditions
under radial symmetry. We assume that the pressure perturbation p satisfies

, fo<r<mry,
p(x,0) = {gb if r > . V=N (77)

Here py is a positive constant representing the initial pressure in the balloon.
Now p; = ?py = —c2po V2. If the velocity of the gas is to be zero initially, as
we must assume in the case of a fixed balloon, then

pe(x,0) = 0. (78)

Since rp satisfies the 1D wave equation, and P is presumably bounded at r = 0,
we extend the solution to negative r by making rp an odd function. Then the
initial value problem for rp is will defined in the D’Alembert sense and the

solution is 1
rp=5[N(r—ct) + N(r+ct)]. (79)
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Note that we have both incoming and outgoing waves since the initial condition
is over a finite domain. For large time, however, the incoming wave does not
contribute and the pressure is a decaying “N” wave of width 2r, centered at
r = ct.

5.3 Kirchoff’s solution

We now take up the solution of the general initial value problem for the wave
equation in 3D:

P — *V2h =0, ¢(x,0) = f(x), di(x,0) = g(x). (80)

This can be accomplished from two ingenious steps. We first note that if ¢
solves the wave equation with the initial conditions f = 0,g = h, the ¢; solves
the wave equation with f = h, g = 0. Indeed¢y; = c>V2¢ tends to zero as t — 0
since this is a property of ¢.

The second step is to note that the solution ¢ with f = 0,g = h is give by

1 / !/
o(x1) = —— /S » h(x')dS'. (81)

S(x,t)

Figure 1. Definition of S(x,t) in the Kirchoff solution.

The meaning of S here is indicated in the figure. To verify that this is
the solution, note first that we are integrating over a spherical surface of radius
4mc?t?, Given that h is bounded, division by ¢ still leaves a factor ¢, so we obtain
0 in the limit as ¢ — 0. Also

t

= | h(x + ytc)dS, (82)

y|=1

by a simple change of variable.Thus

1 t
N / h(x +ytc)dS, + — / cy - Vh(x +ytc)dS,.  (83)
lyl=1 A

4m lvl-1

The first term on the right clearly tends to h(x) as ¢ — 0, while the second term
tends to zero providing that h is a sufficiently well-behaved function.
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We now show that (82) solves the wave equation. Using the divergence
theorem we can write (83) in the form

1 1
= h(x + ytc)dS, + —/ V2h(x')dV’, (84)
LA iy P Amet Jy e

where V(x,t) denotes the sphere of radiuc ¢t centered at x. Then

1 1 ct
¢:—/ h(x + ytc)dS +—/ / V2h(y)dS,dp, 85
e ( )dS, Twct Jo Js, (y)dSy (85)

where S,(x) is the spherical surface of radius p centered at x.
Now we can compute

c 1 1
= — -Vh te)dS,——— 2h(x)dV +— 2h(y)d
form yy |y|:1yV (x+ytc)dS, oot /V(x,t)v (x") V+47rt /S(x,t)v (y)dS,
= L/ V2h(x’)dV’— ! / V2h(x’)dV/—|—L/ V2h(y)d5’
47T0t2 V(x,t) 47T0t2 V(x,t) 47Tt S(x,t) Y
1
=— V2h(y)dsS,.
47t S(x,t) Y
At 92
=— h(x + yte)dSy = c*V=¢. (86)
AT Jiy1=1

Thus we have shown that ¢ satisfies the wave equation.
Given these facts we may write down Kirchoff’s solution to the initial value
problem with initial data f, g:

o 1 ’ ’ ﬁ 1 / ’ '
o) = o [ 9008 o [ seias’

Although we have seen that the domain of dependence of a point in space
at a future time is in fact a finite segment of the line in one dimension, the
corresponding statement in 3D, that the domain of dependence is a finite region
of 3-space, is false. The actual domain of dependence is the surface of a sphere
of radius ct, centered at x. This fact is know as Huygen’s principle.

We note that the bursting balloon problem can be solved directly using the
Kirchoff formula. A nice exercise is to compare this method with the 1D solution
we gave above.

Moving sound sources give rise to different sound field depending upon
whether or not the source is moving slower of faster that the speed of sound. In
the latter case, a source moving to the left along the x-axis with a speed U > ¢
will produce sound waves having a conical envelope, see figure 2.

13
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Figure 2 . Supersonic motion of a sound source.

Here sina = ¢/U = 1/Mwhere M = U/c is the Mach number. A moving of a
slender body through a compressible fluid at supersonic speeds can be thought
of as a sound source. The effect of the body is then confined to within the
conical surface of figure 2. This surface is called the Mach cone.

5.4 Weakly nonlinear acoustics in 1D

We have seen that sound propagation in 1D involves the characteristics x +ct =
constant, representing to directions of propagation. If a sound pulse traveling
in one of these directions is followed, over time weak nonlinear effects can be-
come important, and a nonlinear equation is needed to describe the compressive
waves. In this section we shall derive the equation that replaces the simple linear
wave equation ¢, £ c¢, = 0 associated with the two families of characteristics.

We shall suppose that the disturbance is moving to the right, i.e. is in linear
theory a function of x — ct alone. The characteristic coordinates

E=x—ct,n=x+ct (88)
can be used in place of z,t provided ¢ > 0. Then

g 0 o o0 0 0 89
5__08_54_08_77’8_:0_8_54_8_77' ( )
Thus with the linear theory our right-moving disturbance is annihilated by the
operator
0 10 0
—_— = 4 .
an 2¢Ot  Ox
We shall be therefore looking a compressive wave which, owing to nonlinearity,
has a nonzero but small variation with respect to 7. The variation with respect
to ¢ will involves small effects, both from nonlinearity and from the viscous
stresses.
If the variables are again pg + o', po + p’, and v/, the exact conservation of
mass equation is

(90)

op’ o' 9(p'u)
or oz
To get the proper form of the momentum equation we expand the pressure as
a function of p, assuming that we have a polytropic gas. With p = hp? we have

the Taylor series
C2 -1 /\2
D= po+ 2y =D )
Po 2
Here we have use ¢ = ykp?~!. Thus the momentum equation takes the form,
through terms quadratic in primed quantities,
o' ,0p  0u Jou oy =1, ,0p  4p o

P T s T T o TP T T P r T3 o

(91)

(92)

(93)

14



Note that the viscous stress term comes from the difference 2p — %,u in the

coefficient of %—Z/ in the 1D stress tensor. We assume here that p is a constant.

To derive a nonlinear equation for the propagating disturbance we proceed
in two steps. First, eliminate the ¢ differentiations from the linear parts of the
two equations. This will yield a equation with a first derivative term in 7, along
with the viscosity term and a collection of quadratic nonlinearities in u’, p'.
Then we use the approximate linear relation between v’ and p’ to eliminate p’
in favor of v/ in these terms. The result will be a nonlinear equation for v’ in
will all terms are small but comparable.

The linear relation used in the nonlinear terms comes from

u/ /
oo = 2% (94)

Since dependence upon 7 is weak, the last relation expressed in &, 7 variables
becomes

o' L0
_Cp0_8§ = —c _3§ , (95)
so that
o~ (96)
(&

in the nonlinear terms as well as in any derivative with respect to 7.
Now in characteristic coordinates the linear parts of the equations take the

forms 5 5 o/ )
8_5(_0[)/ + pou’) + 8—n(cp/ +pou) = — g; : (97)
8 !/ 2 1/ 8 !/ 2/
8—5(—0ng +cp)—|—8—n(cp0u +ctp)y=..., (98)

where the RHS consists of nonlinear and viscous terms. Dividing the second of
these by ¢ and adding the two equations we get

d Ap'u') 1 ,0u" py ,0u ~y—1 ,0p 4ud*u’
9 9 ’ n__9\ww) -,0% p 0% T2 490 '
on (e’ +pot) ox o T e o 00 P oz + 3¢ Ox?

(99)

Since the LHS here involves now only the nderivative, we may use (96) to
eliminate p’, and similarly with all terms on the RHS. Also we express x and ¢
derivatives on the RHS in terms of £&. Thus we have

ap 28— o0 O po O po 00y = D)po 00 A O
po on ¢ 0& ¢ 0&

PY: c g T 3coer
(100)
Thus

(101)

Now o 1,0 0
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ou’ ou’ y+1 ,0u  2p 0%
T P S T ver o (103)

Now this involves a linear operator describing the time derivative relative to an
observer moving with the speed c. The linear operator is now the time derivative
holding ¢ fixed. Thus

ou’ y4+1 00 2u 0%

ot T 9 T30 T

(104)

The velocity perturbation u’, we emphasize, is that relative to the fluid at rest
at infinity. Moving with the wave the gas is seen to move with velocity u = v’ —¢
or v’ really denotes u + ¢ where u is the velocity seen by the moving observer.

What we have in (104) is the viscous form of Burgers’ equation. It is a
nonlinear wave equation incorporating viscous dissipation but not dispersion.
By suitable scaling it may be brought into the form

Up + ULy — VUgy = 0. (105)
If the viscous term is dropped we have the inviscid Burgers wave equation,
g + utg = 0. (106)
This equation is much studied as a prototypical nonlinear wave equation. We
review the method of characteristics for such equations in the next section.
6 Nonlinear waves in one dimension

The simplest scalar wave equation can be written in the conservation form

ou 0
equivalent to
ou ou -
T + v(u)a—:C =0, o(u)=F'(u). (108)

The last equation can be regarded as stating that an observer moving with the
velocity v(u) observes that u does not change. The particle path of the observer
is called a characteristic curve. Since w is constant on the characteristic and the
velocity v is a function of u alone we see that the characteristic is a straight line
in the z,t- plane. If u(x,0) = ug(x), the characteristics are given by the family

x = v(ug(x0))t + xo. (109)

Here x¢ acts like a Lagrangian coordinate, marking the intersection of the char-
acteristic with the initial line ¢t = 0.
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As an example of the solution of the initial-value problem using character-
istics, consider the equation

ou ou 0, ifx<0,
8—+u28—20, up(r) =<z, if0<z<l1,. (110)
t v 1, ifzx>1

First observe that the characteristics are vertical line in = < 0, so that v = 0 in
x < 0,t > 0. Similarly the characteristics are the line x =t + g when zg > 1,
so that u = 1 when x > 1+t. Solving x = a3t + z¢ for zo(x,t), we arrive at the
following solution in the middle region 0 < z < 1+ ¢:

14+ VT4t

t 111
u(a, 1) = (111)
Now we modify the initial condition to
0, if z <0,
ug(z) = {x/e, if0<x<e,. (112)
1, ifx>e€

The solution is then, since the characteristics in the middle region are x =

(x0/€)%t + 0
u(z,t) = % [—1 +/1+ 4xt/62}. (113)

letting € — 0 in (113) we obtain
u— \/% (114)

This solution, existing in the wedge 0 < x/t < 1 of the z, t-plane, is called an
expansion fan. Given the discontinuous initial condition

{O, if x <0,
u =

1, ifz>0, (115)

we can solve for the expansion fan directly by noting that v must be a function
of § = x/t Substituting u = f(n) in our equation, we obtain

—nf' + f2f =0, (116)

implying f = £,/7. The positive sign is needed to make the solution continuous
at the edges of the fan.

6.1 Dynamics of a polytropic gas

We have the following equation for a polytropic gas in one dimension, in the
absence of dissipative processes and assuming constant entropy:

2
C
ut—i-uux—i-;px, ot + upy + puy = 0. (117)
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Here ¢2 = kyp?~L. If we define the column vector [u p]T

be written w; + A - w, where
2
A_(Z CJ”). (118)

= w, the system may

We now try to find analogs of the characteristic lines  + ¢t = constant which
arose in acoustics in one space dimension. We want to find curves on which
some physical quantity is invariant. Suppose that v is a right eigenvector of AT
(transpose of A), AT -v = Av. We want to show that the eigenvalue \ plays a
role analogous to the acoustic sound velocity.

Indeed, we see that

T

v ~[wt—|—A~wm]:vT

cwp + Ar v we = 07w + T w, = 0. (119)
Now suppose that we can find an integrating factor ¢ such that ¢po” - dw = dF.
The we would have

F,+ M\F, =0. (120)

Thus dz/dt = A would define a characteristic curve in the x,¢t- plane on which
F = constant. The quantity F is called a Riemann invariant.
Thus we solve the eigenvalue equation

T _|fu—A P —
det(A —M)_’(C% u_AM_o. (121)
Then (u — \)? = 2, or

A=utc= At (122)

We see that the characteristic speeds are indeed related to sound velocity, but
now altered by the doppler shift introduced by the fluid velocity. (Unlike light
through space, the speed of sound does depend upon the motion of the observer.
Sound moves relative to the compressible fluid in which it exists.)

Thus the following eigenvectors are obtained:

)‘Jr : (02_/0/) _pc> Uy = Oa ’U:{ = [p C]a (123)
A (c2c/p g) vo=0, oL =[p —d, (124)

We now choose ¢:
oo +d [Zzhﬂ = dF.. (125)

Since c is a function of p we see that we may take ¢ = 1/p, to obtain

Fy = u:I:/Edp, (126)
P
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which may be brought into the form

Fi=u+ c. (127)
v—1
Thus we find that the Riemann invariants u + ,Y—Elc are constant on the curves
Z—f =utec
0 o 2
2t (ut —} [ + } —0. 128
[3t+(u 0)83: “ ”y—lc (128)

6.2 Simple waves

Any region of the x, t-plane which is adjacent to a region where are fluid variables
are constant (i.e. a region at a constant state), but which is not itself a region of
constant state, will be called a simple wave region, or SWR. The characteristic
families of curves associated with A1 will be denoted by C1. Curves of both
families will generally propagate through a region. In a simple wave region one
family of characteristics penetrates into the region of constant state, so that one
of the two invariants Fy will be known to be constant over a SWR. Suppose
that F_ is constant over the SWR. Then any C, characteristic in the SWR
not only carries a constant value of F; but also a constant value of F_, and
this implies a constant value of u + ¢ (see the definitions (127) of Fy). Thus
in a SWR where F_ 1is constant the Cy characteristics are straight lines, and
similarly for the C_ characteristics over a SWR where F.. is constant.

Let us suppose that a simple wave region involving constant F_ involves u >
0, so fluid particles move upward in the x, t-plane. All of the C characteristics
have positive slope. They may either converge on diverge. In the latter case we
have the situation shown in figure 3(a). Since u+c > u, fluid particles must cross
the Cy characteristics from right to left. Moving along this path, a fluid particle
experiences steadily decreasing values of u+c. We assume now that v > 1. Since
72f1—|— constant by the constancy of F_, we see that in this motion of the
fluid particle ¢, and hence p, is decreasing. Thus the fluid is becoming less
dense, or expanding. We have in figure 3(a) what we shall call a forward-facing
expansion wave. Similarly in figure 3(b) F. is constant in the SWR, and v —c is
constant on each C_ characteristic. These are again an expansion waves, and we
term them backward- facing. Forward and backward-facing compression waves
are similarly obtained when C'; characteristics converge and C_ characteristics
diverge.

u =
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particle /C+
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o path

(@) ®
Figure 3. Simple expansion waves. (a) Forward-facing (b) Backward-facing.

6.3 Example of a SWR: pull-back of a piston

We consider the movement of a piston in a tube with gas to the right, see figure
4. The motion of the piston is described by & = X (t), the movement being to
the left, dX/dt < 0. If we take X (t) = —at?/2, then u = —at on the piston. We
assume that initially u = 0, p = pg in the tube.

t C+

X=X(t
C+

— —| oas

x=0

Figure 4. Pull-back of a piston, illustrating a simple wave region.

On the C'_ characteristics, we have u — 72f1 =F_ = ;Qf{’, or

—1
c=co+ r=- 5 - (129)

Also on C characteristics we have u+ 72f1 constant. By this fact and (129) we

have 2u + 22“1 is constant on the C characteristics. But since v = u, = —at
at the piston surface, this determines the constant value of u . Let the Cy
characteristic in question intersect the piston path at t = ¢3. Then the equation

of this characteristic is

d 1
x*u—i—c:v—i_

1
E = CLto + ¢o. (130)

u—i—coz—ﬁy

Thus 41
T ot + “2—%3. (131)

r=—a
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If we solve the last equation for ¢5(X,T) we obtain

1 rat(y+1) at(y+1),2

Then u = —atg(x,t) in the simple wave region, ¢ being given by (129).

Note that according to (129), ¢ = 0 when ¢t = t*, where at* = %Co. This
piston speed is the limiting speed the gas can obtain. For ¢t > t* the piston pulls
away from a vacuum region bounded by an interface moving with speed —at*.

If we consider the case of instantaneous motion of the velocity with speed
up, the C4 characteristics emerge from the origin as an expansion fan. Their
equation is

1
E:u—l—c:co—l-iu, (133)
t 2
so that 5
x
- } 134
u ”Y+1[t o (134)

To compute the paths £(¢) of fluid particles in this example, we must solve

e _ 2 [% - 200}. (135)

dt  y+1

A particle begins to move with the rightmost wave of the expansion fan, namely
the line x = ¢ot, meets the initial particle position. Thus (135) must be solved
with the initial condition £(¢g) = cotg. The solution is

-2 +1
() = Cit + coto

— ()T (136)

For the location of the C'_ characteristics we must solve

d—x*u—0*3_7u—c _3=7
at ) RV

(z/t — co) — co, (137)

with the initial condition x(tg) = coto. There results

—200 ")/+1 3=y
t) = t t t/tg)T-7. 1
o) = 204+ ot T 1/10) (138)

7 Linearized supersonic flow

We have seen above that 2D irrotational inviscid homentropic flow of a poly-
tropic gas satisfies the system

(¢® = ¢2)bua + (¢ = 5)byy — 2020,V = 0, (139)

2
c* = constant. (140)
v—1

¢+ dh +
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We are interested in the motion of thin bodies which do not disturb the ambient
fluid very much, The assumption of small perturbations, and the corresponding
linearized theory of compressible flow, allows us to consider some steady flow
problems of practical interest which are analogs of sound propagation problems.

We assume that the air moves with a speed U past the body, from left to
right in the direction of the x-axis. Then the potential is taken to have the form

b=Uoz +, (141)

where |¢)| < Up. It is easy to derive the linearized form of (139), since the
second-derivative terms must be primed quantities. The other factors are then
evaluated at the ambient conditions, ¢ ~ cg, ¢, = U). Thus we obtain

(M? = 1)@y — Bl (142)

Here
M = Uo/CO (143)

is the Mach number of the ambient flow. We note that in the linear theory the

pressure is obtained from
ou' 1 9p
—_— 4 —— 144
0 Oz + 0 Oz ) ( )

or
P~ ~Uopody. (145)
We now drop the prime from ¢’. The density perturbation is then p’ = —c;2Upp¢..
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7.1 Thin airfoil theory

We consider first the 2D supersonic flow over a thin airfoil.

Linearized supersonic flow results when M > 1, linearized subsonic flow
when M < 1. The transonic regime M = 1 is special and needs to be examined
as a special case.

y
=y
e *X
AR
y
sl
—_— |

\dy/dx=m_(x) .

Figure 5. Thin airfoil geometry.

We show the geometry of a thin airfoil in figure 5. We assume that the slopes
dy+ /dz and the angle of attack « are small. In this case

my(z) = —a + dyy /dz. (146)
let the chord of the airfoil be [, so we consider 0 < = < [. We note that

I I 1t
7/ (my +m_)dr = —2a, 7/ (m2 +m?)dz = —2a* + 7/ (y3 + y2 )dz.
0 0 0
(147)
The analysis now makes use the following fact analogous to the linear wave
equation in 1D: the linear operator factors as

VIE= T - S [VAE -1y + ) (148)

Thus ¢ = f(x —yvM? — 1)+ g(xz + yvM? — 1), where f, g are arbitrary func-
tions. We now need to use physical reasoning to choose the right form of solu-
tion. In linearized supersonic flow past an airfoil the disturbances made by the
foil propagate out relative to the fluid at the speed of sound, but are simulta-
neously carried downstream with speed Uy. In supersonic flow the foil cannot
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therefore cause disturbances of the fluid upstream of the body. Consequently the
characteristic lines x & yv/M?2 — 1 = constant, which carry disturbances away
from the foil, must always point downstream. Thus in the half space above the
foil the correct choice is ¢ = f(x — yv/M? — 1), while in the space below it the
correct choice is ¢ = g(x +yv/ M2 — 1). To determine these functions, we must
make the flow tangent to the foil surface. Since we are dealing with thin airfoils
and small angles, the condition of tangency can be applied, approximately, at
y = 0. Thus we have the tangency conditions

2y = maa) =~V M 10 ), (149)

o = m_(z) = VAP~ 105 @), (150)

Of interest to engineers is the lift and drag of a foil. To compute these we
first need the pressures

P (z) = =Ugpou'(z,0+) = —Uopo f' (z), p"_(z) =—Uopog' (). (151)

This yields

/ U02p0
p==+ e 1(—a + dyy/dx). (152)
Then l )
. 2apoUgl
L1ft:/ L g )de = 220 153
[0 =t = S (153)
! poU2l 1 /!
Drag = [ (9, ma—p/ m_)do = 0204y [ [(dys Jdo)+{dy- /o))
0 M? -1 U Jo
(154)

Note that now inviscid theory gives a positive drag. We recall that for
incompressible potential flow we obtained zero drag (D’Alembert’s paradox).
In supersonic flow, the characteristics carry finite signals to infinity. In fact the
disturbances are being created so that the rate of increase of kinetic energy per
unit time is just equal to the drag times Uy. This drag is often called wave drag
because it is associated with characteristics, usually called in this context Mach
waves, which propagate to infinity.

What happens if we solve for compressible flow past a body in the subsonic
case M < 17 In the case of thin airfoil theory, it is easy to see that we must
get zero drag. The reason is that the equation we are now solving may be
written ¢ze + ¢gz = 0 where § = v/1 — M?2y. The boundary conditions are at
y = 3y = 0 so in the new variables we have a problem equivalent to that of an
incompressible potential flow.

In fact compressible potential flow past any finite body will give zero drag
so long as the flow field velocity never exceeds the local speed of sound, i.e. the
fluid stays locally subsonic everywhere. In that case no shock waves can form,
there is no dissipation, and D’Alembert’s paradox remains.
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7.2 Slender body theory

Another case of interest is the steady supersonic flow past a slender body of
revolution. If the ambient flow is along the z-axis in cylindrical polar coordinates
x,r, the body we consider is a slender body of revolution about the z-axis. It
is easy to show that the appropriate wave equation (coming from the linearized

equations poUo%—i + c%%—pz/ =0, Uo%—pz/ +poV-u' =0), is

1
62¢zz_¢rr_ ;(br:(); 6: \/M2_ 1. (155)
To find a fundamental solution of this equation, note that
a2¢mc + b2¢yy + C2¢mc =0 (156)

clearly has a “sink-like” solution [(z/a)? + (y/b)? + (z/¢)?] ™!, equivalent to the
simple sink solution (—47 time the fundamental solution) 1/+/(22 + y? + 22) of
Laplace’s equation in 3D. This holds for arbitrary complex numbers a, b, c. It
follows that a solution of (155) is given by

S(z,r) = S (157)

/2 _ 52T2'
Note that this is a real quantity only if 8r < z, where S is singular. We therefore
want to complete the definition of S by setting

S(z,7) =0, Br > z. (158)

Suppose now that we superimpose these solutions by distributing them on
the interval (0,1) of the z-axis,

_ f(©)
¢ = /0 o dc. (159)

However notice that if we are interested in the solution on the surface z—r = C,
then there can be no contributions from values of ¢ exceeding C'. We therefore
propose a potential

o O __qe, ifo<z—pBr<1
o= o TS
’ (S :
fO Wdc, 1fZ—67">1.

where we now require f(0) = 0.

We can in fact verify that (160) gives us a solution of (155) for any admissible
f, but will leave this verification as a problem.

Consider now the behavior of ¢ near the body. When r is small the main
contribution comes from the vicinity of ¢ = z, so we may extract f(z) and use
the change of variables ( = z — r cosh A to obtain

cosh™1(z/pr)
o~ 1) [ AA = f(z) cosh™(2/ ) ~ f(z)log(22/6r).  (161)
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Now let the body be described by r = R(2),0 < z < l. The tangency
condition is then

Or AR B

If A(a) denotes cross-sectional area, then we have

f(z) = —=Uo—. (163)

Figure 6. Steady supersonic flow past a slender body of revolution. Here

tana = 1/vV/M? — 1.

The calculation of drag is a bit more complicated here, and we give the result
for the case where R(0) = R(I) = 0. Then

2 Lpl
Drag:—pfgo / / A"(2)A"(C)
0 JO

The form of this emphasizes the importance of having a smooth distribution of
area in order to minimize drag.

—  _dzdC. 164
log |z — (| ¢ (164)

7.2.1 An alternative formulation and proof of the drag formula

To prove (164) it is convenient to reformulate the problem in terms of a stream-
function. We go back to the basic equations for steady homentropic potential
flow in cylindrical polar coordinates.

Oou, Ou, Orpu,  Orpu,
_ — - = 1
0z or ’ 0z + or 0 (165)
2
u? 4 u? + 102 = constant. (166)
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From the second of (165) we introduce the streamfunction ),

rpU, = (Z—:{),Tpur = —(Z—f. (167)
We then expand the equations as follows:
U
¢~:é%2+wﬁp:po+ﬂ, (168)
and linearize. The result is the equation for v/,
o 10y 5 0%
—— — =0. 169
"orr or 022 (169)

Now the boundary condition in terms of the stream function is that ¢ equal
zero on the slender body r = R(z). Approximately, this gives

U
00 707"2 +1'(2,0) =~ 0. (170)

We also want no disturbance upstream, so ¢’ and /., should vanish on z =
0,7 > 0. A solution of this problem is given by

W_{—%%(f“ =P =PrA"dC, 220
0, if z < fGr.

It is easy to see that the equation and upstream conditions are satisfied
under the conditions that R(0) = 0. For the boundary condition we have

W0 = 20 [ gara= P50 [ wac— - DR (72

Now the drag is given by

l
D:Aﬂmwa, (173)

where the linear theory gives p’ &~ —poUpu’,. However it turns out that the u,
velocity components become sufficiently large near the body to make a leading
order contribution. Thus we have

v~ —poUotl, — %O(u;)z’ T (174)

We note that
v Doy (175)

from which we have

W, = — (176)



Thus

, UO z—[pr A//(C)
u, = —— dcg. 177
T CE o
Similarly
N A7)
u, = 3 /0 (=) ——= dc. (178)
We see by letting » — R~ 0 in (178) that
U
up 5 A (2)/ R(2). (179)
Also
/ " z I AN(Q) — A (2 Br)
up R =g [A (z — Br) cosh™* ar + TR dC} (180)
Mog 2 A"(z) — A"(Q)
- [A 8 3R /0 Tdc}. (181)

We are now in a position to compute D:

A [ [ i 2 [FAED = ATO L
- o0 /OA(Z)/O [47(2)10g ﬂr/o = ac—ga (21(;12;()61.

After an integration by parts and a cancelation we have
2 zZ AN _ AV
po 0 / Az A”( )log z — / Mdc] dz. (183)
0 z—=C
Our last step is to show that (183) agrees with (164). Now if B(z) = A'(z),

/ / 10g|z—<|d(dz_2/lB (z)/OZB’(C)log|z—C|dCdz

_ : / : / ZB(Z)_B(C)
—2/0 B (z)B(z)logzdz+2/0 B (z)/o Zi_chdz

_ ' : " B'(z) - B'(¢)
——2/0 B (Z)B(z)logzdz—2/0 B(z)/o Td{dz, (184)

which proves the agreement of the two expressions. Here we have used

d [*B(z) -B() ,.  B(z) = B() _, “ (2= (Q)B'(z) = B(z) + B(()
dz J, z2—C d¢ = z2—C ’g_ +/0 (z —()? d¢
L (z = Qb'(2) — B(2) + B(()1* “ B'(z) — B(()
=B+ ErsE |+ [ T
:/z 73/(2)_5/«)61(—1-3(2)/2. (185)
0 z =
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8 Shock waves

8.1 Scalar case

We have seen that the equation u; + uu, = 0 with a initial condition u(z,0) =
1 — x on the segment 0 < < 1 produces a family of characteristics

z = (1—zo)t + xo. (186)

This family of lines intersects at (z,t) = (1,1). If the initial condition is ex-

tended as
1, itz <0,
u(@,0) = { 0, ifz>1, (187)

we see that at ¢ = 1 a discontinuity develops in u as a function of x. We
thus need to study how such discontinuities propagate for later times as shock
waves. We study first the general scalar wave equation in conservation form,
ut + (F(u))z = 0. This equation is assumed to come from a conservation law of
the form

b
%/ udx = F(u(a,t)) — F(u(b,1)). (188)

Suppose now that in fact there is a discontinuity present at position £(t) €
(a,b). Then we study the conservation law by breaking up the interval so that
differentiation under the integral sign is permitted:

%[/j udx+/;udx} = F(u(a, 1)) — Fu(b,1)). (189)

Now differentiating under the integral and using the wave equation to eliminate
the time derivatives of u we obtain
dg

o [u(E+, 1) —u(€—, )] = F(u(&+,1)) = F(u(€—,1)). (190)

Thus we have an expression for the propagation velocity of the shock wave:

A€ _ [Fla=¢
dt [ulo=g’

(191)

where here [-] means “jump in”. The direction you take the jump is immaterial
provided that you do the same in numerator and denominator.
Example: Let uy + uu, =0,

0, if v < —1,
u(z,0) =< 1+z, if-1<z<0, (192)
1—2z, if0<z<1/2.
The characteristic family associated with the interval —1 < z < 0 is z =

(14 z0)t + o, while that of 0 < x < 1/2is & = (1 — 2x0)t + x9. The shock first
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occurs at (z,t) = (1/2,1/2). To the right of the shock u = 0, while to the left
the former family gives

uzl—i—xo(x,t):l—i-flizllif- (193)
Then g1 1e+1
= St = 32 =12 9y
Thus

£(t) =/3/2V1+t—1. (195)

We show the x, t-diagram for this in figure 7.

Figure 7. Example of shock formation and propagation.

8.2 A cautionary note

One peculiarity of shock propagation theory is that it is strongly tied to the
physics of the problem. Suppose that u > 0 solves u; + uu, = 0. Then it
will also solve v; + [G(v)], = 0 where G = 2v3/2 and v = w?. In the former
case the shock wave propagation speed is %(qu + u_), while in the latter it is
2(uf +ugu_ +u?)/(uy +u_), which is different. What’s going on??

The point is that u; +wuu, = 0 is based fundamentally on a conservation law
involving F(u) = u?/2. In actual physical problems the conservation laws will
be known and have to be respected. Another way to say this is that equivalent
partial differential equations can arise from different conservation laws. It is the
conservation law that determines the relevant shock velocity however.

We illustrate this with a simple example from the continuum theory of traffic
flow. Consider a single-lane highway with n(z,t) cars per mile as the traffic
density. The cars are assumed to move at a speed determined by the local
density, equal to u = U(1 — n/ng) where U is the maximum velocity and ng
is the density of full packing and zero speed. The flux of cars is the F(n) =
nu = Un(l —n/ng), and the corresponding conservation of car number yields
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the PDE n; + [F(n)], = 0. This is equivalent to v; + [G(v)] = 0 where v = n?
and G = Ulv — 52-v*?]. However the conservation law associated with v, G
makes no physical sense. We know how the speed of the cars depends upon
n, and conservation of number (if indeed that is what happens) dictates the
former conservation law. Note that if the square of density was somehow what
was important in the conservation of mass, we would end up with a conservation

of mass equation 86—”: + V- (p?u) =0.

8.3 The stationary normal shock wave in gas dynamics

We now want to consider a stationary planar shock in gas dynamics, without
viscosity or heat conduction. We assume that constant conditions prevail on
either side of the shock denoted by the subscripts 1,2, see figure 8.

SHOCK

O 1.6

Figure 8. The stationary normal shock wave.

We have the following conservation laws:

Mass :  pirui = paus. (196)
Momentum :  p; + prud = pa + patui. (197)
Recall the following form of the energy equation:
Jdpe
a0 + V- (peu) = —pV - u. (198)
From conservation of momentum we also have
Dop
Z P2 = —u-Vp. 1
DigY u-Vp (199)

Combining these two equations we have

%—erV(Eer)u:O, E:p(e+%u2)- (200)
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At the shock we must therefore require continuity of (pu(e+ £+ 1u?), and since

pu is continuous we have that e + £ + 2u? = h+ 2u? is continuous:

1 1
Energy : hy + iu% = ho + §u§ (201)

Let us write m = pu as the constant mass flux, and let v = 1/p. Then

conservation of energy may be rewritten

1
ha —hy = imQ(Uf —v3). (202)

Also conservation of momentum can be rewritten

m? =12 (203)
V2 — U1
Thus 1
h,l — h,2 = 5(’01 + 'U2)m2('U2 - ’Ul), (204)
which is equivalent to
1
hi—hg = 5(01 +v2))p1 — p2). (205)
Written out, this means
1
€1 — ez + P11 — Pav2 = 5(01 +v2))p1 — p2) (206)
or .
e1 —ex = 5(v2 —v1)(p1 + p2)- (207)

The relations (205),(207) involving the values of the primitive thermodynamic
quantities on either side of the shock are called the Rankine-Hugoniot relations.
For a polytropic gas we have

1
This allows us to write (207) as
2
ﬁ(plvl — p2v2) + (v1 — v2)(p1 + p2) =0, (209)
or 1
—:: — 1(plvl — pav2) — v2p1 + pav1 = 0. (210)

We now introduce notation from Courant and Friedrichs: Let pu? = z—ﬂ (1 has
no relation whatsoever to viscosity.)According to (210), if the state p1, vy exists
upstream of a shock, the possible downstream states p, v satisfy

—p1v1 + pv + povpr — pPpur =0, (211)
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or
(p + 1?p1) (v = pPo1) + (p* = 1)pror = 0. (212)

(V1 1p 1)

—u2 P1

2
L Vs
Figure 9. The Hugoniot of the stationary normal shock wave.

We shall late see that the only allowed transition states are upward along
the Hugoniot from the point (v, p1), as indicated by the arrow, corresponding
to an increase of entropy across the shock.

8.3.1 Prandtl’s relation

For a polytropic gas the energy conservation may use

1_2
Y D /LC2'

= £ = 213
y=1p 22 (213)

Then conservation of energy across a shock becomes
(1= p®)ef + pPui = (1 — p?)e3 + puj = . (214)

Note that then constancy of (1 — u?)c? 4+ p?u? implies that (1 — p?)(u? — ¢?) =
u? — c2. Since v < 1, this last realtion shows that u > ¢, iff u > c and u < ¢,
iff u<e.

Prandtl’s relation asserts that
uug = 2. (215)

This implies that the on one side of the shock u > ¢, and hence u > ¢, i.e.
the flow is supersonic relative to the shock position, and on the other side it is
subsonic. Since density increases as u decreases, the direction of transition on
the Hugoniot indicates that the transition must be from supersonic to subsonic
as the shock is crossed.

To prove prandtl’s relatioin, note that (1+42)p = p(1—p?)c? since p* = 175
Then. of P = pu? + p,
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1P+ pr = pfuips + (14 p*)pr = pr[p*uf + (1 — p?)cf] = picl. (216)
Similarly p?P + p2 = ¢2pa. Thus
pP1—Dp2 = Cz(/’l - P2),

or

p1—p2  p1—p2 1 m?
2 _pop L (217)
P1— P2 s o P2P1 p1p2

where we have used (203).

8.3.2 An example of shock fitting: the piston problem

Suppose that a piston is drive through a tube containing polytropic gas at a
velocity u,. We seek to see under what conditions a shock will be formed.
Let the shock speed be U. In going to a moving shock our relations for the
stationary shock remain valid provided that w — U replaces uw. Thus Prandtl’s
relation becomes

(w1 = U)(uz = U) = & = 12w = U)? + (1 = p2)2, (218)

where the gas velocities are relative to the laboratory, not the shock. Rearrang-
ing, we have

(1= ) (s = U + (= U)(uz —wy) = (1 — ). (219)

Consider now the flow as shown in figure 10.
t X=th
2

shock

Figure 10. Shock fitting in the piston problem.

The gas ahead of the chock is at rest, u; = 0, with ambient sound speed
c1 = cp. Behind the shock the gas moves with the piston speed, ug = u,. Thus
we have a quadratic for U:

(1 - @)U — U = (1 423, (220)
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giving
Up + sqrtuﬁ +4(1 — p?)cd
21— 12)
We see that a shock forms for any piston speed. If u, is small compared to cg,
the shock speed is approximately cg, but slightly faster, as we expect. To get
the density p, behind the shock in terms of that py of the ambient air, we note
that mass conservation gives (u, — U)p, = —Upg or

(221)

U
U-—u,

po = 0. (222)
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