
Chapter 7

Stokes flow

We have seen in section 6.3 that the dimensionless form of the Navier-Stokes
equations for a Newtonian viscous fluid of constant density and constant vis-
cosity is, now dropping the stars,

∂u

∂t
+ u · ∇u + ∇p−

1

Re
∇2u = 0, ∇ · u = 0. (7.1)

The Reynolds number Re is the only dimensionless parameter in the equa-
tions of motion. In the present chapter we shall investigate the fluid dynamics
resulting from the a priori assumption that the Reynolds number is very small
compared to unity, Re � 1. Since Re = UL/ν , the smallness of Re can be
achieved by considering extremely small length scales, or by dealing with a very
viscous liquid, or by treating flows of very small velocity, so-called creeping
flows.

The choice Re� 1 is an very interesting and important assumption, for it is
relevant to many practical problems, especially in a world where many products
of technology, including those manipulating fluids, are shrinking in size. A
particularly interesting application is to the swimming of micro-organisms. In
all of these areas we shall, with this assumption, unveil a special dynamical
regime which is usually referred to as Stokes flow, in honor of George Stokes,
who initiated investigations into this class of fluid problems. We shall also refer
to this general area of fluid dynamics as the Stokesian realm, in contrast to the
theories of inviscid flow, which might be termed the Eulerian realm.

What are the principle characteristics of the Stokesian realm? Since Re is
indicative of the ratio of inertial to viscous forces, the assumption of small Re
will mean that viscous forces dominate the dynamics. That suggests that we
may be able to drop entirely the term Du/Dt from the Navier-Stokes equations,
rendering the system linear. This will indeed be the case, with some caveats
discussed below. The linearity of the problem will be a major simplification.

Looking at (7.1)in the form

Re
(∂u

∂t
+ u · ∇u + ∇p

)

= ∇
2u, ∇ · u = 0, (7.2)
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It is tempting to say that the smallness of Re means that we can neglect the
left-hand side of the first equation, leading to the reduced (linear) system

∇
2u = 0, ∇ · u = 0. (7.3)

Indeed solutions of (7.3) belong to the Stokesian realm and are legitimate.
Example 7.1: Consider the velocity field u = A×R

R3 in three dimensions

with A a constant vector and R = (x, y, z). Note that u = ∇ × A

R
, and so

∇ · u = 0 and also ∇2u = 0, R > 0 since 1
R

is a harmonic function there. This
in fact an interesting example of a Stokes flow. Consider a sphere of radius a
rotating in a viscous fluid with angular velocity Ω. The on the surface of the
sphere the velocity is Ω×R if the no-slip condition holds. Comparing this with
our example we see that if A = Ωa3 we satisfy this condition with a Stokes flow.
Thus we have solved the Stokes flow problem of a sphere spinning in an infinite
expanse of viscous fluid.

It is not difficult to see, however, that (7.3) does not encompass all of the
Stokes flows of interest. The reason is that the pressure has been expelled from
the system, whereas there is no physical reason for this. If, in the process of
writing the dimensionless equations, we had defined the dimensionless pressure
as pL/(µU) instead of p/(ρU2, (7.2) would be changed to

Re
(∂u

∂t
+ u · ∇u

)

+ ∇p = ∇2u, ∇ · u = 0, (7.4)

leading in the limit < → 0 to

∇p−∇2u = 0, ∇ · u = 0. (7.5)

We see that any solution of (7.5) will have the form u = ∇φ+v where ∇2φ = p
and ∇2v = 0,∇ · v = −p. This larger class of flows, valid for Re small, are
called Stokes flows. The special family of flows with zero pressure form a small
subset of all Stokes flows.

7.0.1 Some caveats

We noted above that the dropping of the inertial terms in Stokes flow might have
to be questioned in some cases, and we consider these exceptions now. First,
it can happen that there is more than one possible Reynolds number which
can be formed, involving one or more distinct lengths, and/or a frequency of
oscillation, etc. It can then happen that the time derivative of u needs to be
kept even though the u · ∇u nonlinear term may be dropped. An example is
a wall adjacent too a viscous fluid, executing a standing wave with amplitude
A, frequency ω and wavelength L. If ωL2/ν is of order unity, and we take
U = ωL, then the Reynolds number UL/ν is of order unity and no terms may
be dropped. However the actual velocity is of order ωA, and if A� L then the
nonlinear terms are negligible.

Another unusual situation is associated with the non-uniformity of the Stokes
equations in three dimensions near infinity, in steady flow past a finite body.
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Even through the Reynolds number is small, the fall off of the velocity at R−1

(associated with the fundamental solution of the Stokes equations) means that
near infinity the perturbation of the free stream speed U is or order R−1. Thus
the u ·∇u term is O(U2/R2)) while the viscous term is O(νU/R3). The ratio is
UR/ν , which means that when R ∼ ν/U the stokes equations cannot govern the
perturbational velocity. The momentum equation needed to replace the Stokes
equation contains the term U ∂u

∂x . We shall remark on the need for the Oseen
system later in connection with two-dimensional Stokes flow.

7.1 Solution of the Stokes equations

Returning to dimensional equations, the Stokes equations are

∇p− µ∇2u = 0, ∇ · u = 0. (7.6)

From the divergence of ∇p−∇2u = 0, using the solenoidal property of u, we
see that ∇2p = 0, and hence that ∇4u = ∇2∇2u = 0. The curl of this equation
gives also ∇2∇ × u = 0. The components of u thus solves the biharmonic
equation ∇4φ = 0 as well as the solenoidal condition, and the vorticity is a
harmonic vector field. We shall combine these constraints now and set up a
procedure for constructing solutions from a scalar biharmonic equation.

We first set

ui =
( ∂2χ

∂xi∂xj
− δijχ

)

aj, p = µ
∂∇2χ

∂xj
aj , (7.7)

where a is a constant vector. Inserting these expressions into (7.6) we see that
the equations are satisfied identically provided that

∇4χ = 0. (7.8)

A second class of solution, having zero pressure, has the form

εijk
∂φ

∂j
ak, (7.9)

for a constant vector a, where εijk = 1 for subscripts which are an even per-
mutation of 123, and is −1 otherwise. The solutions (7.9) include example 7.1,
with A = a and φ = R−1.

Example 7.2: The fundamental solution of the Stokes equations in three
dimensions corresponds to a point force Fδ(x) on the right of the momentum
equation, F a constant vector:

∇p− µ∇2u = Fδ(x), ∇ · u = 0. (7.10)

Setting a = F in (7.7) we must have

µ∇4χ = δ(x). (7.11)
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We know the fundamental solution of ∇2φ = 0, satisfying ∇2φ = δ(x) and
vanishing at infinity is − 1

4πR
in three dimensions. Thus

∇
2χ = −

1

4π

1

R
=
µ

R

d2Rχ

dR2
, (7.12)

and so

χ = −
1

8πµ
R+A +BR−1. (7.13)

The singular component is incompatible with (7.11) and the constant A may be
set equal to zero without changing u, and so χ = − 1

8πµR. Then we find

ui =
1

8πµ

(xixj
R3

+
δij
R

)

Fj, p =
1

4π

xjFj
R3

. (7.14)

The particular Stokes flow (7.14) is often referred to as a Stokeslet.

7.2 Uniqueness of Stokes flows

Consider Stokes flow within a volume V having boundary S. Let the boundary
have velocity uS . By the no-slip condition (which certainly applies when vis-
cous forces are dominant), the fluid velocity u must equal uS on the boundary.
Suppose now that there are two solutions u1,2 to the problem of solving (7.6)
with this boundary condition on S. Then v = u1 − u2 will vanish on S while
solving (7.6). But then

∫

V

v·(∇p−µ∇2v)dV = 0 =

∫

V

∂

∂xj

(

vjp−µvi
∂vi
∂xj

)

dV +µ

∫

V

( ∂vi
∂xj

)

dV, (7.15)

where the solenoidal property of v has been used. The first integral on the
right vanishes under the divergence theorem because of the vanishing of v on S.
The second is non-negative (with understood summation over i, j), and vanishes
only if v = 0. We remark that the non-negative term is equal to the rate of
dissipation of kinetic energy into heat as a result of viscous stresses, for the
velocity field v. This dissipation can vanish only if the velocity is identically
zero.

The solution of the Stokes equations is not easy in most geometries, and
frequently the coordinate system appropriate to the problem will suggest the
best formulation. We illustrate this process in the next section.

7.3 Stokes’ solution for uniform flow past a sphere

We now consider the classic solution of the Stokes equations representing the
uniform motion of a sphere of radius a in an infinite expanse of fluid. We
shall first consider this problem using the natural coordinates for the available
symmetry, namely spherical polar coordinates. Then we shall re-derive the
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solution using (7.7). The velocity field in spherical coordinates has the form
(uR, uθ, uφ) = (uR, uθ, 0) and the solenoidal condition is

1

R

∂R2uR
∂R

+
1

sin θR

∂ sin θuθ
∂θ

= 0. (7.16)

We thus introduce the Stokes steam function Ψ,

uR =
1

R2 sin θ

∂Ψ

∂θ
, uθ = −

1

R sin θ

∂Ψ

∂R
. (7.17)

Now Stokes’ equations in spherical coordinates are

∂p

∂R
= µ

(

∇2uR −
2uR
R2

−
2

R2 sin θ

∂ sin θuθ
∂θ

)

, (7.18)

1

R

∂p

∂θ
= µ

(

∇2uθ +
2

R2

∂uR
∂θ

−
uθ

R2 sin2 θ

)

, (7.19)

together with (7.16). The vorticity is (0, 0, ωφ), where

ωφ = −
1

R sin θ
LΨ, (7.20)

where

L =
∂2

∂R2
+

sin θ

R2

∂

∂θ

( 1

sin θ

∂

∂θ

)

. (7.21)

Now from the form ∇p+ µ∇×∇× u = 0 of the momentum equation, we have
the alternative form

∂p

∂R
= −

µ

R sin θ

∂

∂θ
ωφ sin θ, (7.22)

1

R

∂p

∂θ
=
µ

R

∂

∂R
Rωφ. (7.23)

Eliminating the pressure and using (7.20) we obtain

1

R2

∂

∂θ

1

sin θ

∂

∂θ
LΨ +

∂

∂R

1

sin θ

∂

∂R
LΨ = 0. (7.24)

We seek to solve (7.24) with the conditions

uR = uθ = 0, R = a, Ψ ∼
1

2
R2 sin2 θU, R → ∞. (7.25)

We now separate variables in the form

Ψ = sin2 θf(R), (7.26)

to obtain from (7.24)
( ∂2

∂R2
−

2

R2

)2

f = 0. (7.27)
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Trying f = Rλ we get (λ2 − 1)(λ − 2)(λ − 4) = 0 and therefore the general
solution of (7.27) is

f =
A

R
+BR +CR2 +DR4. (7.28)

From the behavior needed for large R, D = 0, C = U/2. The two conditions at
R = a then require that

A =
1

4
Ua2, B = −

3

4
Ua. (7.29)

Thus

Ψ =
1

4
U

(a3

R
− 3aR+ 2R2

)

sin2 θ. (7.30)

7.3.1 Drag

To find the drag on the sphere, we need the following stress component evaluated
on R = a:

σRR = −p+ 2µ
∂uR
∂R

, σRθ = µR
∂

∂R

(uθ
R

)

+
µ

R

∂uR
∂θ

. (7.31)

Given these functions the drag D is determined by

D = a2

∫ 2π

0

∫ π

0

[σRR cos θ − σRθ sin θ] sin θdθdφ. (7.32)

Now from (7.23) the pressure is determined by

1

R

∂p

∂θ
= −

µ

R sin θ

∂

∂R
sin2 θ

(

fRR −
1

R2
f
)

, (7.33)

or, using (7.30),

p = −
3

2
µUa

cos θ

R2
+ p∞. (7.34)

Also

uR =
1

R2 sin θ

∂Ψ

∂θ
=
U cos θ

2R2
(a3/R− 3aR+ 2R2), (7.35)

uθ = −
1

R sin θ

∂Ψ

∂R
= −

U sin θ

4R
(−a3/R− 3a+ 4R). (7.36)

Thus

D = 2πa2

∫ π

0

[
[3

2
µUa

cos θ

R2
− p∞ + 2µ cos θ

(−3a3

R4
−

3a

R

)

R=a

]

cos θ

+
µU sin2 θ

4

(3a2

R4
+

3a

R2

)

R=a

]

sin θdθ. (7.37)

Thus
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D = 3πµaU

∫ π

0

cos2 θ sin θdθ

︸ ︷︷ ︸

pressure

+3πµaU

∫ π

0

sin3 θdθ

︸ ︷︷ ︸

viscous

,

= 2πµaU + 4πµaU = 6πµaU. (7.38)

That is, one-third of the drag is due to pressure forces, two-thirds to viscous
forces.

7.3.2 An alternative derivation

We can re-derive Stokes’ solution for a sphere by realizing that at large distances
from the sphere the flow field must consist of a uniform flow plus the fundamental
solution for a force −6πµUai. This must be added a term or terms which will
account for the finite sphere size. Given the symmetry we try a dipole term
proportional to ∇(x/R3). We thus postulate

u = U i −
6πµaU

8πµ

(xR

R3
+

i

R

)

+C
( i

R3
− 3

xR

R5

)

, (7.39)

where C remains to be determined. By inspection we see that C = −1
4a

2U
makes u = 0 on R = a, so we are done! The pressure is as given previously
p = −3

2
µUax/R3 + p∞, and is entirely associated with the fundamental part of

the solution.

7.4 Two-dimensions: Stokes’ paradox

The fundamental solution of the Stokes equations in two dimensions sets up
as given in example 7.2, except that the biharmonic equation is to be solved
in two dimensions. If Radial symmetry is again assumed, we may try to solve
the problem equivalent to flow past a sphere, i.e. Stokes flow past a circular
cylinder of radius a. If the pressure is eliminated from the Stokes equations in
two dimensions, we get

µ∇2ω = µ∇4ψ = 0. (7.40)

in terms of the two-dimensional stream function ψ. We the set ψ = sin θf(r) to
separate variables in polar coordinates, leading to

[ d2

dr2
+

1

r

d

dr
−

1

r2

]2

f = 0. (7.41)

We are now in a position to study from over a circular cylinder of radius a. The
no-slip condition at the surface of the cylinder requires that ψ(a) = ∂ψ

∂r (a) = 0,
while the attaining of a free stream u = (U, 0) at infinity requires that f ∼

Ur, r → ∞. Now by quadrature we can find the most general solution of (7.41)
as

f(r) = Ar3 +Br ln r + Cr+Dr−1. (7.42)
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The condition at infinity requires that A = B = 0. The no-slip conditions then
yield

Ca+Da−1 = 0, C −Da−2 = 0, (7.43)

which imply C = D = 0. There is not satisfactory steady solution of the two-
dimensional Stokes equations representing flow of an unbounded fluid past a
circular cylinder. This result, known as Stokes paradox, underlines the profound
effect that dimension can play in fluid dynamics.

What is the reason for this non-existence? We can get some idea of what is
going on by introducing a finite circle r = R on which we make u = (U, 0). Then
there does exist a function f(r) satisfying f(a) = f ′(a) = 0, f(R) = R, f ′(R) =
1.1 We shall obtain as asymptotic approximation for large R/a to this solution
by setting A = 0 in (7.42) and satisfying the conditions at r = a with the
remaining terms. Then we obtain

f ∼ B[r ln r − (ln a+ 1/2)r+
1

2
a2/r]. (7.44)

We then make f(R) ∼ UR,R/a → ∞ by setting B = U/ ln(R/a). Then
also f ′(R) ∼ 1 + o(1), R/a → ∞, so all conditions are satisfied exactly or
asymptotically for large R/a. Thus

f ∼
U

ln(R/a)

[
r(ln(r/a) − 1/2) +

1

2
a2/r

]
. (7.45)

A a fixed value of r/a > 1 we see that f → 0 as R/a → ∞. It is only when
ln(r/a)
ln(R/a)

become O(1) that order UR values of f , and hence order U values of

velocity, are realized. Thus a cylindrical body in creeping through a viscous
fluid will tend to carry with a large stagnant body of fluid, and there is no
solution of the boundary-value problem for an infinite domain in Stokes flow.

This paradox results from a failure to properly account for the balance of
forces in a viscous fluid at large distances from a translating body, however
small the Reynolds number of translation may be. If the velocity of translation
is U and the body size L The remedy for this paradox is involves a problem
of singular perturbation wherein the regions distant from the cylinder see a
disturbance from a point force. Let the velocity at some point a distance R � a
from the body be q. The the inertial forces at this point sill be approximately
∼ ρUq/R, (since we should linearize u · ∇u about the free stream velocity).
Also the viscous forces there are of order µq/R2. These two estimates are
comparable when R?L sinν/(UL) = 1/Re. Thus when Re < 1 and we try to
apply the Stokes equations, there is always distant points where the neglect of
the inertial terms fails to be valid.

In the case of three dimensions, we have Stokes’ solution for a sphere and
we know that at distances O(1/Re) the perturbation velocity caused by the
sphere is small, or order Re. Thus, the Stokes approximation fails in a region

1If ψy = U,ψx = 0 on a circle r = R, then f/r+ (f/r)′(y2/r) = U, (f/r)′(xy/r) = 0 when
r = R, by differentiation of sin θf . Thus f(R) = R and f ′(R) = 1.
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where the free stream velocity is essentially unperturbed, and there is no Stokes
paradox. In two dimensions, the perturbation caused by the cylinder persists
out to distances of order 1/Re. Thus the Stokes equations fail to be uniformly
valid in a domain large enough to allow necessary conditions at infinity to be
satisfied.

The remedy for this paradox in two dimensions involves a proper accounting
for the singular nature of the limit Re → 0 in the neighborhood of infinity. At
distances r ∼ Re−1 the appropriate equations are found to be

ρ
∂u

∂x
+ ∇p− µ∇2u = 0, ∇ · u = 0. (7.46)

This system is known as Oseen’s equations. Oseen proposed them as a way of
approximately accounting for fluid inertia in problems where there is an ambient
free stream U i. Their advantage is of course that they comprise a linear system
of equations. The fact remains that they arise rigorously to appropriately treat
viscous flow in the limit of small Reynolds numbers, in a way that expels any
paradox associated with large distances.

To summarize, in creeping flow the Stokes model works well in three di-
mensions; near the body the equations are exact, and far from the body the
non-uniformity, leading to the replacement of the Stokes equations by the Os-
een equations, is of no consequence and Stokes’ solution for a sphere is valid. In
two dimensions the distant effect of a cylinder must be determined from Oseen’s
model. It is only by looking at that solution, expanded near the position of the
cylinder, that we can determine the appropriate solution of Stokes’ equations in
two dimensions; this solution remains otherwise undetermined by virtue of the
Stokes paradox.

7.5 Uniqueness and time-reversibility in Stokes

flow

Consider a viscous fluid contained in some finite region V bounded by surface
or surfaces ∂V . If Stokes flow prevails, and if the boundary moves, each point
of ∂V being assigned a boundary velocity ub, then we have a boundary-value
problem for the Stokes equations, whose solution will provide the instantaneous
velocity of every fluid particle in V . We assume the existence of this solution,
and verify now that it will be unique. Indeed if w is the difference of two distinct
solutions, then for some pressure pw we have a solution of the Stokes equations
in V which vanishes on ∂V . But then

∫

V

wi

[∂pw

∂xi
− µ∇2wi

]

dV = 0

∫

∂V

[

iwipw − µwinj
∂wi
∂xj

]

dS + µ

∫

V

(∂wi
∂xj

)2

dV = µ

∫

V

(∂wi
∂xj

)2

dV ≥ 0, (7.47)
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by use of the divergence theorem, the solenoidal property of w, and the vanishing
of w on ∂V . It follows that w must be a constant, and therefore zero throughout
V .

Thus in Stokes flow the instantaneous velocity of a fluid particle at P is
determined by the instantaneous velocities of all points on the boundary of
the fluid domain. Let us now assume a motion of the boundary through a
sequence of configurations C(t). Each C represents a point in configuration
space, and the motion can be thought of as a path in configuration with time
as a parameter. Indeed “time” has no dynamical significance. A path from
A to B in configurations space can be taken quickly or slowly. In general, let
the configuration at time t be given by C(τ (t)), where τ (0) = 0, τ (1) = 1 but
is otherwise an arbitrary differentiable function of time. If the point P has
velocity uP (t), 0 ≤ t ≤ 1 when τ (t) = t, then in general uP (t) = τ̇ (t)uP (τ (t)).
The vector displacement of the point P under this sequence of configurations is

∆P =

∫ t=1

t=0

τ̇ (t)uP (τ (t))dt =

∫ 1

0

u(τ )dτ (7.48)

and so is independent of the choice of τ . Another way to say this is that the
displacement depends upon the ordering of the sequence of configurations but
not on the timing of the sequence.

The displacement does however depend in general on the path taken in con-
figuration space in going from configuration C0 to C1. We now give an example
of this dependence.

Example 7.3: We must find two paths in configuration space having the
same starting and finishing configurations (i.e. the boundary points coincide
in each case), but for which the displacement of some fluid particle is not the
same. Consider then a two-dimensional geometry with fluid contained in the
circular annulus a < r < b. Let the inner cylinder of radius a rotate with time
so that the angle made by some fixed point on the cylinder is θ(t) relative to a
reference axis. The outer circle r = b sis fixed. The instantaneous velocity of
each point of the fluid. Given that ∂p

∂θ = 0 and that the velocity is 0.uθ(r), the
function uθ(r) satisfies (from the Stokes form of (6.15)) Luθ = 0. Integrating
and applying boundary conditions, the fluid velocity in the annulus is

uθ =
aθ̇

a2 − b2
r −

ab2θ̇

a2 − b2
r−1. (7.49)

Consider not two paths which leave the position of the point of the inner circle
unchanged. In the first, θ rotates from 0 to π/4 in one direction, then from π/4
back to zero in the other direction. Clearly every fluid particle will return to its
original position after these two moves. For the second path, rotate the cylinder
through 2π. Again every point of the boundary returns to its starting point,
but now every point of fluid in a < r < b moves through an angle θ which is
positive and less than 2π. Thus only the points on the two circles r = a, b are
in their starting positions at the end of the rotation.

Note that in this example the first path, returning all fluid particles to
their starting positions, is special in that the sequence of configurations in the
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second movement is simply a reversal of the sequence of configurations in the first
movement (a rotation through angle π/4. A moments reflection show that zero
particle displacement is a necessary consequence of this kind path- a sequence
followed by the reverse sequence. And note that the timing of each of these
sequences may be different.

The second path, a full rotation of the inner circle, involves no such reversal.
In fact if the direction of rotation is reversed, the fluids point move in the
opposite direction. If we now let these to paths be repeated periodically, say
every one unit of time t, then in the first case fluid particles move back and
forth periodically with no net displacement, while in the second case particles
move on circles with a fixed displacement for each unit of time. Notice now an
importance difference in the time symmetry of these two cases. If time is run
backwards in the first case, we again see fluid particles moving back and forth
with no net displacement. In the second case, reversal of time leads to steady
rotation of particles in the opposite direction. We may say that the flow in
the first case exhibits time reversal symmetry, while in the second case it does
not exhibit this symmetry. In general, a periodic boundary motion exhibiting
time reversal symmetry cannot lead to net motion of any fluid particle over one
period, as determined by the resulting time-periodic Stokes flow. On the other
hand, if net motion is observed, the boundary motion cannot be symmetric
under time reversal.

However a motion that is not symmetric under time reversal may in fact not
produce any displacement of fluid particles.

Example 7.4 In the previous example, let both circles rotate through 2π
with θ̇b = b

a θ̇a. The boundary motion does not then exhibit time-reversal sym-
metry, and in fact the fluid can be seen to be in a solid body rotation. Thus
every fluid particle returns to its starting position.

Theorem 7 Time reversal symmetry of periodic boundary motion is sufficient
to insure that all fluid particles return periodically to their starting positions.
If particles do not return periodically to their starting position, the boundary
motion cannot be time-symmetric.

7.6 Stokesian locomotion and the scallop theo-

rem

One of the most important and interesting applications of Stokes flow hydrody-
namics is to the swimming of micro-organisms. Most micro-organisms move by
a periodic or near periodic motion of organelles such as cilia and flagella. The
aim of this waving of organelles is usually to move the organisms from point A
to point B, a process complementary to a variable boundary which moves the
fluid about but does not itself locomote. Indeed time-reversal symmetry plays
an key role in the selection of swimming strategies.

Theorem 8 (The scallop theorem) Suppose that a small swimming body in an
infinite expanse of fluid is observed to execute a periodic cycle of configurations,
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relative to a coordinate system moving with constant velocity U relative to the
fluid at infinity. Suppose that the fluid dynamics is that of Stokes flow. If the
sequence of configurations is indistinguishable from the time reversed sequence,
then U = 0 and the body does not locomote.

The reasoning here is that actual time reversal of the swimming motions
would lead to locomotion with velocity −U. But if the two motions are indis-
tinguishable then U = −U and so U = 0. The name of the theorem derives
from the non-locomotion of a scallop in Stokes flow that simple opens and closes
its shell periodically. In Stokes flow this would lead to a back and forth motion
along a line (assuming suitable symmetry of shape of the shell), with no net
locomotion.

In nature the breaking of time-reversal symmetry takes many forms. Flagella
tend to propagate waves from head to tail. The wave direction gives the arrow
of time, and it reverses, along with the swimming velocity, under time reversal.
Cilia also execute complicated forward and return strokes which are not time
symmetric.

Problem set 7

1. Consider the uniform slow motion with speed U of a viscous fluid past a
spherical bubble of radius a, filled with air. Do this by modifying the Stokes flow
analysis for a rigid sphere as follows. The no slip condition is to be replaced on
r = a by the condition that both ur and the tangential stress σrθ vanish. (This
latter condition applies since there is no fluid within the bubble to support this
stress.) Show in particular that

Ψ =
U

2
(r2 − ar) sin2 θ

and that the drag on the bubble is D = 4πµUa. Note: On page 235 of Batchelor
see the analysis for a bubble filled with a second liquid of viscosity µ̄. The present
problem is for µ̄ = 0.

2. Prove that Stokes flow past a given, rigid body is unique, as follows. Show
if p1,u1 and p2,u2 are two solutions of

∇p− µ∇2u = 0,∇ · u = 0,

satisfying ui = −Ui on the body and

u ∼= O(1/r),
∂ui
∂xj

, p ∼ O(1/r2)

as r → ∞, then the two solutions must agree. (Hint: Consider the integral of
∂/∂xi(wj∂wj/∂xi) over the region exterior to the body, where w = u1 − u2.)
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3. Two small spheres of radius a and density ρs are falling in a viscous fluid
with centers at P and Q. The line PQ has length L� a and is perpendicular to
gravity. Using the Stokeslet approximation to the Stokes solution past a sphere,
and assuming that each sphere sees the unperturbed Stokes flow of the other
sphere, show that the spheres fall with the same speed

U ≈ Us(1 + ka/L+O(a2/L2)),

and determine the number k. Here Us = 2a2g/9ν(ρs/ρ−1) is the settling speed
of a single sphere in Stokes flow.


