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Abstract

This thesis studies leveraged exchange-traded funds (ETF) and options written on

them.

In the first part, we give an exact formula linking the price evolution of a

leveraged ETF (LETF) with the price of its underlying ETF. We test the formula

empirically on historical data for 56 leveraged funds (44 double-leveraged, 12 triple-

leveraged) using daily closing prices. The results indicate excellent agreement

between the formula and the empirical data. The formula shows that the evolution

of the price of an LETF is sensitive to the realized volatility of the underlying

product. The relationship between an LETF and its underlying asset is “path-

dependent.”

The second part of the study focuses on the relations between options on LETFs

and options on the underlying ETFs. The main result shows that an option on an

LETF can be replicated by a basket of options on the underlying ETF after a suit-

able choice of strikes and notionals. In particular, we obtain a new, relative-value,

model for pricing LETF options. The derivation makes strong use of the path-

dependency result of Part I. As a consequence, we derive a simple non-parametric

formula which links the volatility skew of an LETF with the volatility skew of the

underlying ETF.

We validate the theory empirically by showing that the model prices for options

on LETFs are in excellent agreement with actual mid-market prices observed in

markets. The empirical study was carried out on two LETFs linked to the S&P

500 index (one double-leveraged, one reverse-double-leveraged). The issue of vega-

hedging options on LETFs with options on the underlying ETFs is also examined

from this viewpoint.
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Chapter 1

Introduction to ETFs and

Leveraged ETFs

1.1 Exchange Traded Funds (ETFs)

An exchange-traded fund (or ETF) is an investment fund traded on stock ex-

changes, much like stocks. An ETF holds assets, such as stocks or bonds, and

trades at approximately the same price as the net asset value of its underlying

assets over the course of the trading day. ETFs have been available in the US

since 1993 and in Europe since 1996. ETFs traditionally have been index funds.

In January 1993, SPY was introduced to track the S&P 500 index. In 1998, the

“Dow Diamonds” (DIA) were introduced, tracking the notable Dow Jones Indus-

trials Average. In 1999, the influential “cubes” (NASDAQ: QQQQ) were launched,

attempting to replicate the movement of the NASDAQ-100. As of February 2008,

index ETFs in the United States included 415 domestic equity ETFs, with assets

of $350 billion; 160 global/international equity ETFs, with assets of $169 billion;

and 53 bond ETFs, with assets of $40 billion.
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Unlike traditional mutual funds, ETFs do not sell or redeem their individual

shares at net asset value, or NAV. Instead, so-called authorized participants (usu-

ally large financial institutions), purchase and redeem shares directly from the

ETF fund manager, but only in large blocks. Purchases and redemptions of the

creation units generally are in kind, with the institutional investor contributing

or receiving a basket of securities of the same type and proportion held by the

ETF. Authorized participants usually act as market makers in the open market,

using their ability to exchange creation units with their underlying securities to

help ensure that their intraday market price approximates the net asset value of

the underlying securities.

ETFs generally provide the easy diversification, low expense ratios, and tax

efficiency of index funds, while still maintaining all the features of ordinary stock,

such as limit orders, short selling, and options. Because ETFs can be economically

acquired, held, and disposed of, some investors invest in ETF shares as a long-term

investment for asset allocation purposes, while other investors trade ETF shares

frequently to implement market timing investment strategies.

1.2 Leverage is the Key

In March 2008, the U.S. Securities and Exchange Commission began to authorize

the creation of actively managed ETFs. Among them, leveraged ETFs have been

drawing considerable amount of interest from investors, active traders, and port-

folio managers. Leveraged exchange-traded funds (LETFs), or simply leveraged

ETFs, are a special type of ETFs that attempt to achieve returns that are more

sensitive to market movements than non-leveraged ETFs. There are two types of

leveraged ETFs, bull and bear. A leveraged bull ETF attempts to achieve a daily

2



return of 2 or 3 times of the daily return of the underlying index. For example,

ProShares Ultra Financial ETF (UYG) offers investors double of the Dow Jones

U.S. Financials index, while Direxion Daily Financial Bull 3X Shares (FAS) repli-

cates triple of the same index. A leveraged inverse (bear) ETF, on the other hand,

may attempt to achieve the return that is -2 or -3 times of the daily index return,

meaning that it will gain double or triple the loss of the market. For instance,

ProShares UltraShort Financial ETF (SKF) offers -2 times the Dow Jones Finan-

cials Index, while Direxion Daily Financial Bear 3X Shares (FAZ) tracks -3 times

the same index. From the point of view of traders who are subjected to Reg T

margin, these instruments provide a simple way of doubling or tripling exposure to

an index while using the same amount of capital. Also, active traders can use an

inverse leveraged ETF as a substitute for short-selling the underlying assets while

the latter are hard-to-borrow. For instance, many traders took long positions in

SKF, a financial bearish fund, toward the end of 2008, when financial stocks were

difficult or even impossible to short.

Classical ETFs track an index or basket in a one-for-one fashion; they are

essentially passively managed. In contrast, LETFs require active management:

this involves borrowing funds to purchase additional shares (bullish LETFs), or

short-selling (bearish LETFs) and rebalancing the position on a daily basis. Man-

agers sometimes simplify the hedging of LETFs by entering into a daily resetting

total-return swap with qualified counterparties 1.

Throughout 2009, issues have been raised in the marketplace regarding the

suitability of leveraged ETFs for long-term investors seeking to replicate a multiple

1The description of the hedging mechanism given here is not intended to be exact, but rather to
illustrate the general approach used by ETF managers to achieve the targeted leveraged long and
short exposures. For instance, managers can trade the stocks that compose the ETFs or indices,
or enter into total-return swaps to synthetically replicate the returns of the index that they track.
The fact that the returns are adjusted daily is important for our discussion. Recently Direxion
Funds, an LETF manager, has announced the launch of products with monthly rebalancing.
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of an index performance. UBS AG announced, in July 2009, that it would cease

marketing LETFs “because such products do not conform to its emphasis on long-

term investing”(Bloomberg News, July 2009). “Leveraged products are complex,

carry substantial risks and are intended for short-term trading,” a warning to

customers on Fidelity’s Web site said on Aug, 2009. “Most reset daily and seek

to achieve their objectives on a daily basis. Due to compounding, performance

over longer periods can differ significantly from the performance of the underlying

index.” The move was followed by other major U.S. brokers, like Morgan Stanley.

The Financial Industry Regulatory Authority (FINRA) in June, 2009 issued a

reminder to brokers and advisers, urging them to use care in selling inverse and

leveraged ETFs, and disclose fully the risks inherent in these products (see [1][2]

for more information). Subsequently, in August, the Securities and Exchange

Commission issued an Alert notice [3].

The problem is that the fund manager incurs trading losses because he needs

to buy when the index goes up and sell when the index goes down in order to

maintain a fixed leverage ratio. This means the manager is “short Gamma”, or

short convexity.

It has been empirically established that if we consider investments over ex-

tended periods of time (e.g, three months, one year, or more), there are significant

discrepancies between LETF returns and the returns of the corresponding lever-

aged buy-and-hold portfolios composed of index ETFs and cash (see [4]). To

better understand the suitability issue, let’s consider, for instance, UYG and its

underlying ETF, IYF. Figure 1.1 compares the price history of UYG and that of

a static double-leveraged position in IYF, with both funds starting with the same

investment in Jan 2008.

Clearly, the two charts do not coincide. In particular, UYG clearly underper-
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Figure 1.1: depicts the difference between the performance of UYG and a static
double-leveraged position in IYF. Notice, in particular, that UYG does not grow
like the double-leveraged position in the March 2009 rally.

forms the double leveraged IYF during the rally of Spring 2009. The corresponding

chart for the reverse double leveraged fund (SKF versus -2 times IYF), shown in

Figure 1.2, is even more dramatic.

Another interesting observation can be made by considering the price history

of a pair consisting of a leveraged ETF and the corresponding reverse product with

same leverage (e.g., UYG and SKF). Typically, the price charts should be “mirror

images” of each other, at least over short periods of time. However, as we increase

the time horizon, we see clearly that the graphs are no longer mirror images, and

the correlation between the two products breaks down as time passes (see figures

1.3, 1.4 and 1.5). Mathematically speaking, the returns have correlation -1 for

short periods of time, but the correlation diminishes as the horizon increases. We

will discuss this in section 2.3.

Tracking daily returns is not the same as tracking long-term returns. As we
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Figure 1.2: shows a comparison between the performance of SKF and a static
double-leveraged short position in IYF. The discrepancy is remarkable.

shall see, there are two primary differences. First, there is an issue of compounding.

We all know the difference between daily compounded and annually compounded

interest rates. This effect is sometimes referred as convexity. In fixed income,

compounding is tantamount to investing at higher returns more frequently, which

implies a faster growth of capital. In the case of LETFs, there is a second important

reason for the discrepancies seen in the charts: volatility. The more volatile the

assets are, the larger the tracking error, as we shall see in the next section.
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Figure 1.3: depicts a comparison of the charts of UYG and SKF for a period of
5 days, ending on March 5, 2010. Notice that the two charts are perfect mirror
images of one another.

Figure 1.4: compares the charts of UYG and SKF for a period of 6 months, prior
to March 5, 2010. Notice that the two charts are no longer perfect mirror images,
with a slight under-performance by SKF.
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Figure 1.5: compares the charts of UYG and SKF for a period of 2 years, prior to
March 5, 2010. Notice both funds actually have negative returns over the two-year
period.
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Chapter 2

Modeling Leveraged ETFs

To model the dynamics of LETFs, we denote the spot price of the underlying index

or the ETF which tracks the underlying index by St, the leveraged ETF price by

Lt, and the leverage ratio by β. For example, UYG corresponds to β = 2 and SKF

will correspond to β = −2.

2.1 Discrete-time Model

Suppose there are N trading days, and denote the one-day return of the underlying

ETF by RS
i , and the one-day return of the LETF by RL

i , where i = 1, 2, 3, . . . , N .

The LETF provides a daily exposure of β dollars of the underlying securities before

fees and expenses. Accordingly, there is a link between RS
i and RL

i . If the LETF

is bullish (β > 0)

RL
i = βRS

i − βr∆t− f∆t+ r∆t (2.1.1)

where r is the reference interest rate (for example, fed fund rate or 3-month LI-

BOR), ∆t = 1/252 represents one trading day, and f is the expense ratio of the

9



LETF. Typical value of f ranges from 75 bps to 150 bps.

If the LETF is bearish (β < 0)

RL
i = βRS

i − β(r − λi)∆t− f∆t+ r∆t (2.1.2)

where the extra term λi∆t represents the cost of borrowing components of the

underlying index or the underlying ETF on day i. This cost is the difference

between reference interest rate and rate applied to the cash proceeds from short-

sales of the components of the underlying index or ETF. If the components of the

underlying index or ETF are widely available for lending, the cost of borrowing is

negligible. This cost of borrowing is important for calibrating the model to fit the

time series of index or ETFs which are hard-to-borrow since 2008 1.

Compounding the return of the LETF, we have

LN = L0

N∏
i=1

(1 +RL
i ) (2.1.3)

Substituting RL
i in equation (2.1.1) and (2.1.2) (according to sign of β), we

obtain a relationship between the price of the LETF and the underlying index or

ETF. As shown in the Appendix (section 2.7.1), under mild conditions, we have

Lt

L0

≃
(
St

S0

)β

exp

(
β − β2

2
Vt + βHt + ((1− β)f + r)t

)
(2.1.4)

where

Vt =
t∑

i=1

(RS
i − R̄S)2 with R̄S =

∑t
i=1R

S
i

N

1We emphasize the cost of borrowing, since we are interested in LETFs which track financial
indices. The latter have often been hard-to-borrow since July 2008. Moreover, broad market
ETFs such as SPY have also been sporadically hard-to-borrow in the last quarter of 2008; see
Avellaneda and Lipkin [5].
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i.e. Vt is the accumulative realized variance over the time t, and where

Ht =
t∑

i=1

λi∆t

represents the accumulative cost of borrowing the components of the underlying

index or ETF. This cost, in practice, can be obtained by subtracting the average

applicable “short rate” from the reference interest rate each day and accumulating

it over the time period of interest. Notice, in addition to these two factors, formula

(2.1.4) also shows dependence on the reference interest rate and the expense ratio

of the LETF. We will show in the following paragraph, under the assumption that

the price of the underlying ETF follows an Itô process, formula (2.1.4) is exact,

meaning ≃ can be replaced by =.

2.2 Continuous-time Model

Let’s begin by assuming the price of the underlying ETF, St, follows a stochastic

differential equation

dSt

St

= µtdt+ σtdWt (2.2.1)

where Wt is a standard Wiener process and σt, µt are the instantaneous volatility

and drift respectively. Also, σt and µt are non-anticipative functions with respect

to Wt and they can be random.

Following the same logic of (2.1.1), (2.1.2), if the LETF is bullish (β > 0), we

have

dLt

Lt

= β
dSt

St

− ((β − 1)r + f)dt, (2.2.2)
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and if the LETF is bearish (β < 0), the equation becomes

dLt

Lt

= β
dSt

St

− ((β − 1)r − βλ+ f)dt. (2.2.3)

In the Appendix (section 2.7.2), we show the following formula holds:

Lt

L0

=

(
St

S0

)β

exp

(
((1− β)r − f) t+ β

∫ t

0

λtds+
β − β2

2

∫ t

0

σ2
sds

)
(2.2.4)

where we assume λt = 0 if β > 0. Formula (2.1.4) and (2.2.4) are essentially the

same if we define

Vt =

∫ t

0

σ2
t ds, and Ht =

∫ t

0

λtds.

The only difference is that equation (2.1.4) is only valid for ∆t ≪ 1, whereas

formula (2.2.4) is exact, assuming the price process is an Itô process. These two

equations show that the relationship between the LETF and its underlying index

or underlying ETF depends on

1. the realized variance over the period of interest

2. the leverage ratio β

3. the funding rate or reference interest rate

4. the expense ratio of the LETF

5. the cost of borrowing in the case of bearish LETF

Items 3 and 4 do not require further explanation. Item 5 comes from the fact

that the fund manager of the bearish ETF may have to incur additional financing

cost to maintain short positions if the underlying components of the index are

hard-to-borrow. Items 1 and 2 are the most interesting.
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The dependence on the realized variance might be surprising at first2. It means

that the holder of the LETF has a negative exposure to the realized variance of

the underlying index or the underlying ETF 3. This holds for all β > 1 or β < 0,

which means both bullish and bearish LETFs suffer from realized variance. For

instance, if β = 2, which means it’s a double-long LETF, the term corresponds to

the realized variance in formula (2.2.4) reads

−22 − 2

2

∫ t

0

σ2
sds = −

∫ t

0

σ2
sds.

In the case of β = −2, which means it’s a double-short LETF, the corresponding

term is

(−2)2 − (−2)

2

∫ t

0

σ2
sds = −3

∫ t

0

σ2
sds.

We notice, in particular, the dependence on the realized variance is stronger on

bearish LETF, which means the bearish LETF with the same |β| as bullish LETF

suffers more from the accumulated realized variance.

2.3 Correlation Decay

Because of the common “time decay” for the both bullish and bearish LETF, we

have a way to explain figures 1.3, 1.4 and 1.5. Let’s consider a pair of bullish and

bearish LETFs, which track the same underlying ETF. For example, ProShares

Ultra Financial ETF (UYG) and ProShares UltraShort Financial ETF (SKF). The

2We find out that analogous results were obtained independently in a note issued by Barclays
Global Investors [6], which contains a formula similar to (2.2.4) without including finance and
expense ratios.

3Interestingly, similar considerations about volatility exposure apply to a class of over-the-
counter (OTC) products known as Constant Proportion Portfolio Insurance (CPPI). These prod-
ucts are typically embedded in structured notes and other derivatives marketed by insurance
companies and banks (see, for instance, Black and Perold [7], Bertrand and Prigent [8] and Zhu
[9]). Although not directly relevant to this study, the parallel between the behavior of listed
LETFs and OTC products may be of independent interest.
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daily return of UYG is the inverse of the daily return of SKF. Denote the price of

the bullish LETF and the bearish LETF by L+
t , L

−
t respectively. For simplicity,

we assume the reference interest rate, the expense ratio and the borrowing cost are

all zero. Following the same argument in section (2.2), we have a formula which

relates L+
t and L−

t .

dL+
t

L+
t

= −dL
−
t

L−
t

. (2.3.1)

It follows that

L+
t

L+
0

=

(
L−
t

L−
0

)−1

e−
∫ t
0 σ2

sds (2.3.2)

Notice equation (2.3.2) is the same as equation (2.2.4) if we take β = −1 and f, r, λ

to be zero. We are interested in the correlation ρ(t) between the return of L+
t and

the return of L−
t over a time period t. Mathematically,

ρ(t) =
E
[
(
L+
t

L+
0

)(
L−
t

L−
0

)
]
− E

[
L+
t

L+
0

]
E
[
L−
t

L−
0

]
√
E
[
(
L+
t

L+
0

− E[
L+
t

L+
0

])2
]
E
[
(
L−
t

L−
0

− E[
L−
t

L−
0

])2
] (2.3.3)

If L−
t follows an Itô process

dL−
t

L−
t

= σtdWt, we have
L−
t

L−
0

= e
∫ t
0 σsdWs− 1

2

∫ t
0 σ2

sds

E

[
(
L−

t

L−
0

)2
]
= E

[
e2

∫ t
0 σsdWs−

∫ t
0 σ2

sds
]

(2.3.4)

E

[
(
L+

t

L+
0

)2
]
= E

[
e−2

∫ t
0 σsdWs+

∫ t
0 σ2

sdse−2
∫ t
0 σ2

sds
]
= E

[
e−2

∫ t
0 σsdWs−

∫ t
0 σ2

sds
]

(2.3.5)

E

[
(
L+
t

L+
0

)(
L−

t

L−
0

)

]
= E

[
e−

∫ t
0 σ2

sds
]

(2.3.6)

E[
L−

t

L−
0

] = E[
L+
t

L+
0

] = 1 (2.3.7)
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If volatility is deterministic, (2.3.4) and (2.3.5) become e
∫ t
0 σ2

sds and

ρ(t) =
E
[
(
L+
t

L+
0

)(
L−
t

L−
0

)
]
− E

[
L+
t

L+
0

]
E
[
L−
t

L−
0

]
√
E
[
(
L+
t

L+
0

− E[
L+
t

L+
0

])2
]
E
[
(
L−
t

L−
0

− E[
L−
t

L−
0

])2
]

=
e−

∫ t
0 σ2

sds − 1

e
∫ t
0 σ2

sds − 1

= −e−
∫ t
0 σ2

sds. (2.3.8)

If volatility is stochastic, but uncorrelated with Wt, equations (2.3.4) and (2.3.5)

become E[e
∫ t
0 σ2

sds]. We have

ρ(t) =
E[e−

∫ t
0 σ2

sds]− 1

E[e
∫ t
0 σ2

sds]− 1
(2.3.9)

As we can see, ρ is always negative and it goes from −1 to 0 monotonically as

t → ∞. In fact, the correlation of the L+
t and L−

t decays exponentially as a

function of the accumulated realized variance. The same analysis applies to any

pair of ETFs which are perfectly inversely correlated at small time interval. This

is consistent with the empirical observation in section 1.2, figures 1.3, 1.4 and 1.5.

2.4 Consequences for Buy-and-hold Investors

2.4.1 Comparison with Buy-and-hold: Break Even Levels

Formula (2.2.4) shows that the value of an LETF, regardless of whether it is bullish

or bearish, has a “time decay” associated with the realized variance of the under-

lying index or underlying ETF. In other words, if there is no significant change

in St over the investment horizon, but the realized variance is large, the investor

who holds the LETF will under-perform the corresponding leveraged return of the
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underlying ETF.

Let’s consider an investor who buys one dollar of leveraged ETF and simulta-

neously shorts β dollars of underlying ETF (where, if β < 0, he buys −β dollars).

For simplicity, let’s assume interest rate, expense ratio, and cost of borrowing are

all zeros.

Using formula (2.2.4), the equity of the investor follows

E(t) =
Lt

L0

− β
St

S0

− (1− β) =

(
St

S0

)β

exp

(
β − β2

2
Vt

)
− β

St

S0

− (1− β) (2.4.1)

where 1−β is the cash or credit from the initial transaction. To be precise, we will

consider the cases of a double-long and a double-short separately. Let Y = E(t)

and X = St

S0
, we obtain

Y = e−VtX2 − 2X + 1, β = 2

Y = e−3Vt
1

X2
+ 2X + 3, β = −2 (2.4.2)

In the case of double-long ETFs (β = 2), the equity in the portfolio behaves

like a parabola in X = St

S0
with the curvature tending to zero exponentially as

a function of the accumulative realized variance. The investor is long convexity

(Gamma), short variance, so he incurs time decay (Theta). The break-even levels

for X as a function of Vt are

• Double-long

e−VtX2 − 2X + 1 = 0

X+ = eVt(1 +
√
1− e−Vt), X− = eVt(1−

√
1− e−Vt) (2.4.3)

• Double-short

2X3 − 3X2 + e−Vt = 0 (2.4.4)
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X+,X− are the two positive roots of the cubic equation (2.4.4).

As a result, the equity of the investor is positive if Xt > X+ or Xt < X−. For

small time t = ∆t and β > 0

Vt =

∫ t

0

σ2
sds ≃ σ2

0∆t

X+ = eVt(1 +
√
1− e−Vt) = (1 + Vt)(1 +

√
Vt) ≃ 1 +

√
Vt = 1 + σ0

√
∆t

X− = eVt(1−
√
1− e−Vt) = (1 + Vt)(1−

√
Vt) ≃ 1−

√
Vt = 1− σ0

√
∆t

The main observation is that no matter whether the LETF is bullish or bearish,

they underperform the static leveraged strategy unless the returns of the underlying

ETFs overcome the above volatility-dependent “break-even levels.”

2.4.2 Targeting An Investment Return Using Dynamic Repli-

cation with LETFs

Let’s assume the investor wants to replicate m times the return of the underlying

ETF over a given investment horizon. We know, from previous the discussion,

that merely holding the leveraged ETF with β = m can not guarantee the desired

return due to convexity and “time decay”. We seek to achieve this objective by

dynamically adjusting the holdings in the LETF.

Suppose the agent is long n shares of underlying ETF and short ∆ shares of

17



the corresponding β−leveraged ETF. The one period return of this portfolio is

dΠ = ndS −∆dL

= ndS −∆L
dL

L

= ndS −∆Lβ
dS

S
+ (carry terms)

It follows that the choice of ∆ = n
Lβ

should eliminate the market risk. Based on

this, consider an investor with an initial endowment of Π0 dollars and a dynamic

strategy which invests

δt = Π0
1

β

St

S0

(2.4.5)

dollars in LETF with multiplier β. For simplicity, we assume λ = f = 0. Let

us denote the value of his position at time t by Πt. The change in value of the

position across time, funded at rate r, satisfies

dΠt = rΠtdt+ δt
dLt

Lt

− rδtdt

= rΠtdt+ δt

(
β
dSt

St

+ (1− β)rdt

)
− rδtdt

= rΠtdt+Π0
1

β

St

S0

(
β
dSt

St

+ (1− β)rdt

)
− rδtdt

= rΠtdt+Π0
dSt

S0

+Π0
1

β

St

S0

rdt− Π0
St

S0

rdt− rΠ0
1

β

St

S0

dt

= rΠtdt+Π0
dSt

S0

− Π0
St

S0

rdt (2.4.6)

Integrating this stochastic differential equation from t = 0 to T , it follows that

ΠT

Π0

=
ST

S0

for all T .
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Accordingly, the agent can “replicate” the returns of the underlying stock over

any maturity by dynamic hedging with the LETF, with essentially, 1
|β| of the capital

required to do the same trade in underlying ETF.

In section 2.5.2, we study this method empirically to show it is feasible to

replicate multiple return of the underlying for longer horizons.

2.5 Empirical Validation

2.5.1 Validation of Equation (2.2.4)

To validate equation (2.2.4), we consider 56 LETFs that currently trade in the US

equity market. Of these, we consider 44 LETFs issued by ProShares, consisting

of 22 Ultra long (β = 2) and 22 Ultra short (β = −2) LETFs. Table 2.1 gives a

list of ProShares LETFs4, their tickers, together with corresponding sectors and

their underlying ETFs. We consider the evolution of the 44 LETFs from January

2, 2008 to March 20, 2009, a period of 308 business days.

We also include 12 triple-leveraged ETFs issued by Direxion Funds. Direxion’s

LETFs5 were issued later than the ProShares funds, in November 2008; they pro-

vide a shorter historical record to test our formula. Nevertheless, we include the

3X Direxion funds for sake of completeness and their triple leverage.

We define the tracking error

ϵ(t) =
Lt

L0

−
(
St

S0

)β

exp

(
((1− β)r − f) t+ βHt +

β − β2

2
Vt

)
(2.5.1)

where Vt is the accumulated realized variance, Ht is the accumulated borrowing

cost, r is the reference interest rate and f is the expense ratio for the LETF. To

4For information about ProShares, see http://www.proshares.com
5For information about Direxion, see http://www.direxionfunds.com
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Table 2.1: Double-Leveraged ETFs considered in the study
Underlying ProShares Ultra ProShares Ultra Short Index/Sector

ETF (β = 2) (β = −2)

QQQQ QLD QID Nasdaq 100
DIA DDM DXD Dow 30
SPY SSO SDS S&P500 Index
IJH MVV MZZ S&P MidCap 400
IJR SAA SDD S&P Small Cap 600
IWM UWM TWM Russell 2000
IWD UVG SJF Russell 1000
IWF UKF SFK Russell 1000 Growth
IWS UVU SJL Russell MidCap Value
IWP UKW SDK Russell MidCap Growth
IWN UVT SJH Russell 2000 Value
IWO UKK SKK Russell 2000 Growth
IYM UYM SMN Basic Materials
IYK UGE SZK Consumer Goods
IYC UCC SCC Consumer Services
IYF UYG SKF Financials
IYH RXL RXD Health Care
IYJ UXI SIJ Industrials
IYE DIG DUG Oil & Gas
IYR URE SRS Real Estate
IYW ROM REW Technology
IDU UPW SDP Utilities

Table 2.2: Triple-Leveraged ETFs considered in the study
Underlying Direxion 3X Direxion 3X Index/Sector

ETF or Index Bull (β = 3) Bear (β = 3)

IWB BGU BGZ Russell 1000
IWM TNA TZA Russell 2000

RIFIN.X FAS FAZ Russell 1000 Financial
RIENG.X ERX ERY Russell 1000 Energy

EFA DZK DPK MSCI EAFE Index
EEM EDC EDZ MSCI Emerging Markets
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estimate the daily volatility, we use the standard deviation of the returns of the

underlying ETF sampled over a period of 5 days preceding each trading day:

σ̂t
2 =

1

5

5∑
i=1

(
RS

t/∆t−i

)2 −(1

5

5∑
i=1

RS
t/∆t−i

)2

(2.5.2)

For interest rates and expense ratios, we use the 3-month LIBOR rate published

by federal Reverse Bank (H.15 Report), and the expense ratio for the ProShares

LETFs published in the prospectus6. In all cases, we set λt = 0, i.e. we do not

take into account stock-borrowing costs explicitly.

The empirical results for ProShares are summarized in Table 2.3 and Table 2.5.

Graphical comparisons of the tracking error for some of the major indices are also

displayed. See Figure 2.1 and 2.2.

In the case of long LETFs, we find that the average of the tracking error ϵ(t) over

the simulation period is typically less than 100 basis points. The standard deviation

is also on the order of 100 basis points, with a few slightly higher observations for

financial sector LETFs. This suggests that the formula (2.2.4), using the model

for stochastic volatility in (2.5.2), gives a reliable model for the relation between

the leveraged and the underlying ETFs across time.

In the case of short LETFs, we also assume that λt = 0 but expect a slightly

higher tracking error, particularly between July and November of 2008, when re-

strictions for short-selling in U.S. stocks were put in place. We observe higher levels

for the mean and the standard deviation of the tracking error and some significant

departures from the exact formula during the period of October and November

2008, especially in the financial sector, which we attribute to short-selling con-

straints. The tracking errors for the Direxion triple-leveraged ETFs have higher

standard deviations, which is not surprising given that they have higher leverage.

6For more information, see http://www.proshares.com/resources/litcenter/
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Double-Leveraged Bullish ETFs
Underlying Tracking Error Standard Deviation Leveraged

ETF average,% % ETF

QQQQ 0.04 0.47 QLD
DIA 0 0.78 DDM
SPY -0.06 0.4 SSO
IJH -0.06 0.38 MVV
IJR 1.26 0.71 SAA
IWM 1.26 0.88 UWM
IWD 1 0.98 UVG
IWF 0.5 0.59 UKF
IWS -0.33 1.2 UVU
IWP -0.02 0.61 UKW
IWN 2.15 1.29 UVT
IWO 0.5 0.74 UKK
IYM 1.44 1.21 UYM
IYK 1.2 0.75 UGE
IYC 1.56 1.04 UCC
IYF -0.22 0.74 UYG
IYH 0.4 0.42 RXL
IYJ 1.05 0.74 UXI
IYE -0.73 1.71 DIG
IYR 1.64 1.86 URE
IYW 0.51 0.55 ROM
IDU 0.25 0.55 UPW

Table 2.3: Average tracking error (2.5.1) and standard deviation obtained by ap-
plying formula (2.2.4) to the ProShares long LETFs from January 2, 2008 to March
20 2009. Notice that the average tracking error is for the most part below 100bps
and the standard deviation is comparable. In particular the standard deviation is
inferior to the daily volatility of these assets, which often exceeds 100 basis points.
This suggests that formula (10) gives the correct relationship between the NAV of
the LETFs and their underlying ETFs.
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Triple-Leveraged Bullish ETFs
Underlying Tracking Error Standard Deviation Leveraged
ETF/Index average,% % ETF

IWB 0.44 0.55 BGU
IWM 0.81 0.75 TNA

RIFIN.X 3.67 2.08 FAS
RIENG.X 2.57 0.7 ERX

EFA 1.26 2.32 DZK
EEM 1.41 1.21 EDC

Table 2.4: Average tracking errors and standard deviations for triple-leveraged
long ETFs analyzed here, since their inception in November 2008.

Double-Leveraged Bearish ETFs
Underlying Tracking Error Standard Deviation Leveraged

ETF average,% % ETF

QQQQ 0.22 0.8 QID
DIA -2.01 3.24 DXD
SPY -1.4 2.66 SDS
IJH 0.69 0.64 MZZ
IJR -0.55 0.86 SDD
IWM 0.94 0.91 TWM
IWD 0.32 1.4 SJF
IWF -0.3 1.34 SFK
IWS -2.06 3.03 SJL
IWP 0.93 0.92 SDK
IWN -2.21 1.8 SJH
IWO -0.19 0.79 SKK
IYM 1.82 0.99 SMN
IYK -0.76 1.98 SZK
IYC 0.79 0.92 SCC
IYF 3.3 3.03 SKF
IYH 1.04 0.91 RXD
IYJ 0.32 0.74 SIJ
IYE 0.43 3.09 DUG
IYR 2 2.07 SRS
IYW 0.01 0.8 REW
IDU 1.75 1.06 SDP

Table 2.5: Same as in Table 2.3, for double-short LETFs. Notice that the tracking
error is relatively small, but there are a few funds where the tracking error is
superior to 200 basis points. We attribute these errors to the fact that many
ETFs, particularly in the Financial and Energy sectors, and the stocks in their
holdings were hard-to-borrow from July to November 2008.
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Triple-Leveraged Bearish ETFs
Underlying Tracking Error Standard Deviation Leveraged
ETF/Index average,% % ETF

IWB -0.08 0.64 BGZ
IWM 0.65 0.76 TZA

RIFIN.X -1.63 4.04 FAZ
RIENG.X -1.41 1.01 ERY

EFA -1.54 1.86 DPK
EEM 0.49 1.43 EDZ

Table 2.6: Average tracking errors and standard deviations for triple-leveraged
short ETFs analyzed here, since their inception in November 2008. Notice again
that the errors for financial and energy are slightly higher than the rest.
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Figure 2.1: shows tracking error for SSO and QLD which track the double leveraged
(β = 2) return of S&P 500 and NASDAQ 100 respectively. We see that the tracking
error spikes during the crisis (Oct 2008-Nov 2008).
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Figure 2.2: shows tracking error for SDS and QID which track the inverse double
leveraged (β = −2) return of S&P 500 and NASDAQ 100 respectively. Notice
during the crisis, the tracking error jumps and deviates from the 0 level. The
reason is that we assume λt = 0. There are a significant number of stocks in S&P
500 and NASDAQ 100 which were hard-to-borrow from Oct 2008 to Nov 2008.
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We note, in particular, that the errors for FAS and FAZ are the largest, which

is consistent with the fact that they were the most volatile and hard-to-borrow

LETFs during the crisis.

2.5.2 Validation of Dynamic Replication Strategy with LETFs

To validate the replicating strategy in section 2.4.2, we consider using all ProShares

double-long (β = 2) LETFs to replicate double of the 6-month return of the

underlying ETFs. Therefore, m = β = 2. We demonstrate the effectiveness

of the dynamic replication method using different rebalancing techniques. We

consider a dynamic hedging in which we rebalance if the ∆ (equation (2.4.5))

exceeds a band of 1%, 2%, 5% and 10% and also hedging with fixed time-steps

of 1, 2, 5 and 15 business days. The results are shown in Table 2.7 and 2.8.

Table 2.9 indicates the expected number of days between rebalancing for ∆-band

based strategy. The results indicate that rebalancing when the ∆ exceeds 5%

of notional gives reasonable tracking errors. The corresponding average intervals

between rebalancing can be large, which means that, in practice, one can achieve

reasonable tracking errors without necessarily having to rebalance the ∆ daily or

even weekly.

A strong motivation for using LETFs to target a given level of return is to

take advantage of leverage. However, in order to achieve his target return over

an extended investment period using LETFs, the investor needs to rebalance his

portfolio according to his ∆ exposure. As a result, dynamic replication with LETFs

may not be suitable for many retail investors. On the other hand, this analysis will

be useful to active traders, or traders who manage LETFs with longer investment

horizons.
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Average tracking error (%) for dynamic replication of
6-month returns using double-long LETFs

ETF 1% 2% 5% 20% 1 day 2 days 5 days 15 days

QQQQ -0.29 -0.71 -1.05 -1.62 -0.56 -0.96 -1.45 -1.74
DIA -0.99 -0.99 -1.37 -1.45 -0.47 -0.59 -0.84 -0.99
SPY -0.97 -0.92 -1.19 -1.47 -0.92 -1.17 -1.55 -1.77
IJH -0.39 -0.37 -0.79 -0.99 -0.53 -0.75 -1.05 -1.09
IJR -0.56 -0.57 -1.07 -2.68 -0.66 -0.9 -1.44 -1.7
IWM 0.37 0.22 -0.49 -1.44 0.47 0.03 -0.7 -0.93
IWD -0.03 -0.35 -0.3 -0.64 0 -0.15 -0.57 -0.79
IWF -0.15 -0.25 -0.54 -1.08 -0.12 -0.37 -0.68 -0.81
IWS 0.87 0.22 0.81 0.14 0.69 0.71 0.54 0.24
IWP -0.16 -0.14 -0.54 -1.41 -0.36 -0.4 -0.82 -0.89
IWN 0.94 0.4 0.56 -0.03 -0.91 0.86 0.36 0.14
IWO 0.23 0.03 -1 -1.63 -0.05 -0.44 -1.15 -1.45
IYM -0.39 -0.51 -0.89 -2.35 -0.24 -0.67 -1.54 -1.91
IYK 0.24 0.13 -0.16 -0.06 0.37 0.34 0.1 0.04
IYC 0.58 0.57 -0.13 -0.76 0.71 0.7 0.04 -0.21
IYF -0.36 -0.62 0.01 -0.54 -0.3 -0.35 -1.28 -2.17
IYH 0.22 -0.1 -0.14 0.27 0.3 0.19 0.03 0.07
IYJ 0.12 -0.09 -0.36 -0.92 0.14 -0.04 -0.3 -0.61
IYE -1.44 -2.02 -1.9 -1.76 -1.19 -1.82 -2.21 -2.07
IYR -0.43 0.58 -0.8 -0.95 -0.61 0.55 -0.74 -1.48
IYW -0.5 -0.46 -1.67 -1.39 -0.37 -0.85 -1.41 -1.76
IDU 0.75 0.45 0.73 0.11 0.83 0.78 0.46 0.52

Table 2.7: Average tracking error, in % of notional, for the dynamic replication of
ETF returns over 6 months with m = β = 2. The first four columns correspond to
rebalancing when the ∆ reaches the edge of a band of ±x% around zero. The last
four columns correspond to rebalancing at fixed time intervals. The data used to
generate this table corresponds, for each ETF, to all overlapping 6-month returns
in the year 2008.
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Standard deviation of tracking error (%) for dynamic replication of
6-month returns using double-long LETFs

ETF 1% 2% 5% 20% 1 day 2 days 5 days 15 days

QQQQ 0.75 0.77 0.8 1.2 0.75 0.76 0.84 0.93
DIA 0.35 0.37 0.41 0.36 0.36 0.39 0.47 0.43
SPY 0.27 0.32 0.39 0.69 0.27 0.3 0.39 0.45
IJH 0.48 0.49 0.56 1.19 0.47 0.48 0.62 0.65
IJR 1.19 1.21 1.33 1.39 1.2 1.29 1.22 1.17
IWM 0.66 0.67 0.71 1.6 0.67 0.75 0.71 0.74
IWD 1.38 1.38 1.4 1.52 1.38 1.43 1.41 1.49
IWF 0.93 0.94 1.07 1.21 0.95 0.99 0.94 0.99
IWS 2.05 2.05 2.08 2.29 2.05 2.01 2.07 2.09
IWP 0.83 0.82 0.93 1.24 0.83 0.91 0.84 0.91
IWN 1.71 1.7 1.76 2.09 1.72 1.7 1.8 1.82
IWO 0.8 0.8 0.91 1.32 0.79 0.99 0.84 1
IYM 1.05 1.07 1.15 1.24 1.07 1.2 1.29 1.59
IYK 0.57 0.57 0.63 0.67 0.56 0.63 0.61 0.63
IYC 0.8 0.78 0.83 0.95 0.8 0.98 0.91 1.03
IYF 1.12 1.18 1.12 1.88 1.1 1.21 2.01 1.49
IYH 0.56 0.55 0.58 0.73 0.56 0.55 0.57 0.62
IYJ 0.71 0.75 0.82 0.84 0.7 0.7 0.79 0.87
IYE 0.64 0.66 0.77 1.26 0.64 0.65 1.02 1.49
IYR 1.47 1.47 1.62 2.08 1.47 1.6 1.88 1.83
IYW 1.45 1.45 1.59 2.05 1.45 1.39 1.49 1.42
IDU 0.53 0.52 0.54 0.72 0.51 0.53 0.54 0.6

Table 2.8: Same as the previous table, for the standard deviations of the tracking
errors.
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Average number of business days between portfolio
rebalancing for the 6-month dynamic hedging strategy:

the effect of changing the ∆ band
ETF 1% 2% 5% 10%

QQQQ 2.03 4.14 24 60
DIA 2.5 5.22 30 120
SPY 2.73 5.22 40 NR
IJH 2.26 4.62 24 NR
IJR 2.03 4.29 20 NR
IWM 1.85 4.62 30 NR
IWD 2.18 5 30 120
IWF 2.26 5 30 NR
IWS 2.26 6.67 17 NR
IWP 1.85 4.14 30 NR
IWN 2.26 4.62 24 NR
IWO 1.85 4 20 60
IYM 1.74 3.08 9 40
IYK 3.16 8.57 30 120
IYC 1.9 3.87 30 NR
IYF 1.45 2.93 9 30
IYH 2.79 10.91 30 120
IYJ 2.35 4.8 17 NR
IYE 1.79 3.43 12 40
IYR 1.62 3.16 17 30
IYW 2 3.53 40 NR
IDU 2.67 6.32 20 120

Table 2.9: Each column shows the average number of days between rebalancing the
portfolio, assuming different ∆-bandwidth for portfolio rebalancing. For instance,
the column with heading of 1% corresponds to a strategy that rebalances the
portfolio each time the net delta exposure exceeds 1% of the notional amount.
The expected number of days between rebalancing increases as the bandwidth
increases. NR means the band is never reached during the time period of interest
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2.6 Conclusion

In this chapter, we proposed a formula linking the evolution of an LETF with the

price of the underlying index or ETF and its realized volatility. The formula is

validated empirically using end-of-day data on 56 LETFs, of which 44 are double-

leveraged and 12 are triple leveraged. This formula validates the fact that on

log-scale LETFs will underperform the nominal returns by a contribution that is

primarily due to the realized volatility of the underlying ETF. The formula also

takes into account the financing costs and shows that for short ETFs, the cost of

borrowing the underlying stock may play a role as well, as observed in Avellaneda

and Lipkin [5].

We also demonstrate that LETFs can be used for hedging and replicating non-

leveraged ETFs, provided that traders engage in dynamic hedging. The path-

dependence of LETFs makes them interesting for the professional investors, since

they are linked to the realized variance and the financing costs. However, they

may not be suitable for buy-and-hold investors who aim at replicating a particular

index by taking advantage of the leveraged provided, for the reasons explained

above.

2.7 Appendix to Chapter 2

2.7.1 Discrete-time Model (Equation (2.1.4))

Let ai = (β− 1)r+ f −βλi, where λi is the cost of borrowing the underlying asset

on day i (λ is 0 if β > 0 ). We assume the daily return of the underlying index or

ETF is

RS
i = ξi

√
∆t+ µ∆t
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where ξi, i = 1, 2, 3, . . . , N is a stationary process such that E[ξi] = 0 and E[|ξi|3] <

∞. Notice we don’t assume the returns are uncorrelated.

From equation (2.1.1), (2.1.2) and (2.1.3), we use Taylor expansion and find

ln

(
Lt

L0

)
=

∑
i

ln(1 +RL
i )

=
∑
i

ln(1 + βRS
i − ai∆t)

=
∑
i

(βRS
i − ai∆t)−

1

2

∑
i

(βRS
i − ai∆t)

2 +
∑
i

Θ((RS
i )

3)

=
∑
i

(
βRS

i − ai∆t−
1

2
β2(RS

i )
2

)
+
∑
i

(
Θ((RS

i )
3) + Θ(RS

i ∆t)
)

(2.7.1)

Using the same method, we have

β ln

(
St

S0

)
= β

∑
i

ln(1 +RS
i )

= β
∑
i

(
RS

i − 1

2
(RS

i )
2

)
+
∑
i

Θ((RS
i )

3) (2.7.2)

Subtracting equation (2.7.2) from (2.7.1), we get

31



ln
(

Lt

L0

)
− β ln

(
St

S0

)
=

∑
i

(
−ai∆t+

β − β2

2
(RS

i )
2

)
+
∑
i

(
Θ((RS

i )
3) + Θ(RS

i ∆t)
)

=
∑
i

(
−ai∆t+

β − β2

2
((RS

i )
2 − µ2∆t2)

)
+
∑
i

(Θ((RS
i )

3) + Θ(RS
i ∆t) + Θ(∆t2))

= −
∑
i

ai∆t−
β2 − β

2
Vt +

∑
i

(
Θ((RS

i )
3) + Θ(RS

i ∆t)
)
(2.7.3)

We need to show the remainder in (2.7.3) is negligible. In fact

∑
i

(RS
i )

3 =
∑
i

(ξ3i∆t
3
2 +O(∆t2))

≃
∑
i

ξ3i∆t
√
∆t =

∑
i

ξ3i
t

N

√
∆t = E[ξ3]t

√
∆t

and similarly,

∑
i

RS
i ∆t =

∑
i

(ξi∆t
3
2 +O(∆t2))

≃
∑
i

ξi∆t
√
∆t =

∑
i

ξi
t

N

√
∆t = E[ξ]t

√
∆t = 0

As a result, the remainder is bounded by the third moment of ξi, multiplied by the

investment horizon t and by
√
∆t. This means that, for reasonable size of t, say

less than a year, the error is of the order of the third moment of the daily return

of the underlying ETF, which is negligible.

32



2.7.2 Continuous-time Model (Equation (2.2.4))

From equation (2.2.1), (2.2.2) and (2.2.3), we use Itô’s lemma to obtain

d lnSt =
dSt

St

− σ2
t

2
dt (2.7.4)

d lnLt =
dLt

Lt

− β2σ2
t

2
dt

= β
dSt

St

− ((β − 1)r − βλ+ f)dt− β2σ2
t

2
dt (2.7.5)

Multiplying (2.7.4) by β and subtracting it from (2.7.5), we obtain

d lnLt − β lnSt =
β − β2

2
σ2
t dt− ((β − 1)r − βλ+ f)dt, (2.7.6)

which gives the desired result (2.2.4).
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Chapter 3

Options on Leveraged ETFs

3.1 Replicating Options on LETFs with Options

on Underlying ETF

In this chapter, we consider options on LETFs, which are of great interest to

both academics and practitioners. The two simple equations ((2.2.2) and (2.2.3)),

which link the underlying ETF return with its leveraged bull and bear ETFs return,

provide us a way to price the options on LETFs with respect to options on the

underlying ETF. From now on, we will use St, L
+
t and L−

t to denote the price of the

underlying ETF, leveraged bullish ETF and leveraged bearish ETF respectively.

Because of formula (2.2.4), a contingent claim on L+
t or L−

t can be treated as a

contingent claim on St. It is well-known that for any payoff function g(St) and any

scalar c ∈ R (see Carr-Madan [10]):

g(S) = g(c)+g′(c)(S−c)+
∫ c

−∞
g′′(K)(K−S)+dK+

∫ ∞

c

g′′(K)(S−K)+dK (3.1.1)
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No arbitrage condition implies that the value of the option Vt[g] can be expressed

in terms of the price of puts Pt(K) and calls Ct(K) respectively:

Vt[g] = g(c) + g′(c)(Ct(c)− Pt(c)) +

∫ c

0

g′′(K)Pt(K)dK +

∫ ∞

c

g′′(K)Ct(K)dK

(3.1.2)

If we assume the interest rate, expense ratio and cost of borrowing are all zero

for simplicity, Lt = L0

(
St

S0

)β
e

β−β2

2
Vt , where Vt =

∫ t

0
σ2
sds. This is the payoff of a

power option on St with “time decay” due to the realized variance. Let’s further

assume that the volatility is deterministic first. We will discuss how to extend this

to a stochastic volatility environment later. If we consider the contingent claim on

St to be just Lt, that is g(St) = Lt = L0

(
St

S0

)β
e

β−β2

2
Vt . Substituting into equation

(3.1.2), we get

g′(St) = L0
β

S0

(
St

S0

)β−1

e
β−β2

2
Vt and g′′(St) = L0

β(β − 1)

S2
0

(
St

S0

)β−2

e
β−β2

2
Vt .

If we pick a double-long LETF (β = 2), g′(St) =
2L0

S0

(
St

S0

)
e−Vt and g′′(St) =

2L0

S2
0
e−Vt . Equation (3.1.2) becomes

Vt[g] = g(c) +
(

2cL0

S2
0

)
e−Vt (Ct(c)− Pt(c))

+2L0

S2
0
e−Vt

(∫ c

0
Pt(K)dK +

∫∞
c
Ct(K)dK

)
(3.1.3)

Since c is arbitrary, we can pick c = 0. We have

Vt[g] =
2L0

S2
0

e−Vt

∫ ∞

0

Ct(K)dK (3.1.4)

This means that if we want to replicate Lt using options on the underlying
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ETF, we should choose a basket of equally weighted calls if the Lt is bullish. This

is the same as saying Lt is a power option on St with a time decay factor e−Vt .

Now, let’s use the same idea on a European call option on the bullish LETF

(β > 0) with strike k. The payoff function is

g(St) =

(
L0

(
St

S0

)β

e
β−β2

2
Vt − k

)+

= L0e
β−β2

2
Vt

(
(
St

S0

)β − k

L0

e
β2−β

2
Vt

)+

(3.1.5)

Let x = St

S0
and k∗ =

(
k
L0
e

β2−β
2

Vt

) 1
β

, substituting into 3.1.5

g(x) = L0e
β−β2

2
Vt
(
xβ − (k∗)β

)+
. (3.1.6)

Its first and second derivatives are

g′(x) = H(x− k∗)L0e
β−β2

2
Vtβxβ−1 (3.1.7)

g′′(x) =


L0e

β−β2

2
Vtβ(β − 1)xβ−2 if x > k∗

δ(x− k∗)L0e
β−β2

2
Vtβ(k∗)β−1 if x = k∗

0 if x < k∗

(3.1.8)

where H(x) is the Heaviside function and δ(x) is the Dirac delta function. Substi-

tuting (3.1.7) and (3.1.8) into (3.1.1), we obtain

g(x) = L0e
β−β2

2
Vtβ(k∗)β−1(x− k∗)+︸ ︷︷ ︸

tangent approximation

+

∫ ∞

k∗
L0e

β−β2

2
Vtβ(β − 1)Kβ−2(x−K)+dK︸ ︷︷ ︸
tangent correction

(3.1.9)

Suppose the volatility is deterministic, taking expectation of both sides of equation
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payoff

Tangent approximation

Tangent correction

k*

Figure 3.1: shows the value decomposition of a call on a bullish leveraged ETF:
the tangent approximation and the tangent correction.

(3.1.11) and using the no arbitrage condition, we get

CL(k, t) =
L0

S0

e
β−β2

2
Vtβ

(
(k∗)β−1CS(S0k

∗, t) + (β − 1)

∫ ∞

k∗
Kβ−2CS(S0K, t)dK

)
,

(3.1.10)

where k∗ =
(

k
L0
e

β2−β
2

Vt

) 1
β

, CL(k, t) is the value of a call on L with strike k at time

t and CS(S0k
∗, t) is the value of a call on S with strike S0k

∗ at time t.

If k ̸= 0, we can do a change of variable in the tangent correction part, let

K = yk∗,

∫∞
k∗

L0

S0
e

β−β2

2
Vtβ(β − 1)Kβ−2(x−K)+dK

=
∫∞
1

L0

S0
e

β−β2

2
Vtβ(β − 1)(k∗y)β−2(x− k∗y)+k∗dy

= L0

S0
e

β−β2

2
Vtβ(β − 1)(k∗)β−1

∫∞
1
yβ−2(x− k∗y)+dy.
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Equation (3.1.9) becomes

g(x) =
L0

S0

e
β−β2

2
Vtβ

(
(k∗)β−1(x− k∗)+ + (β − 1)(k∗)β−1

∫ ∞

1

yβ−2(x− k∗y)+dy

)
=

L0

S0

e
β−β2

2
Vtβ(k∗)β−1

(
(x− k∗)+ + (β − 1)

∫ ∞

1

yβ−2(x− k∗y)+dy

)
,(3.1.11)

whence

CL(k, t) =
L0

S0

e
β−β2

2
Vtβ(k∗)β−1

(
CS(S0k

∗, t) + (β − 1)

∫ ∞

1

yβ−2CS(S0k
∗y, t)dy

)
=

1

S0

βL
1
β

0 k
1− 1

β e
1−β
2

Vt

(
CS(S0k

∗, t) + (β − 1)

∫ ∞

1

yβ−2CS(S0k
∗y, t)dy

)
,

In the case that β = 2, we have

CL(k, t) =
2

S0

√
L0ke

− 1
2
Vt

(
CS(S0k

∗, t) +

∫ ∞

1

CS(S0k
∗y, t)dy

)
(3.1.12)

We can derive similar equations for the case β < 0. Consider a call on a bearish

LETF,

g(St) =

(
L0

(
St

S0

)β

e
β−β2

2
Vt − k

)+

= L0e
β−β2

2
Vt

(
(
St

S0

)β − k

L0

e
β2−β

2
Vt

)+

(3.1.13)

Let x = St

S0
and k∗ =

(
k
L0
e

β2−β
2

Vt

) 1
β

, the payoff function becomes

g(x) = L0e
β−β2

2
Vt(xβ − (k∗)β)+ (3.1.14)

Its first and second derivatives are

g′(x) = H(k∗ − x)L0e
β−β2

2
Vt(β)xβ−1 (3.1.15)
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g′′(x) =


L0e

β−β2

2
Vtβ(β − 1)xβ−2 if x < k∗

δ(k∗ − x)L0e
β−β2

2
Vt|β|(k∗)β−1 if x = k∗

0 if x > k∗

(3.1.16)

Substituting (3.1.15) and (3.1.16), we have

g(x) = L0e
β−β2

2
Vt |β|(k∗)β−1(k∗ − x)+︸ ︷︷ ︸

tangent approximation

+

∫ k∗

0

L0e
β−β2

2
Vtβ(β − 1)Kβ−2(K − x)+dK︸ ︷︷ ︸
tangent correction

.
(3.1.17)

No arbitrage condition gives us

CL(k, t) =
L0

S0

e
β−β2

2
Vt|β|

(
(k∗)β−1PS(S0k

∗, t) + (1− β)

∫ k∗

0

Kβ−2PS(S0K, t)dK

)
(3.1.18)

where k∗ =
(

k
L0
e

β2−β
2

Vt

) 1
β

. If k ̸= 0, we can perform a change of variable K = yk∗,

∫ k∗

0

Kβ−2PS(K, t)dK = (k∗)β−1

∫ 1

0

yβ−2PS(k
∗y, t)dy. (3.1.19)

Equation (3.1.17) becomes

CL(k, t) =
L0

S0

e
β−β2

2
Vt |β|(k∗)β−1

(
PS(S0k

∗, t) + (1− β)

∫ 1

0

yβ−2PS(S0yk
∗, t)dy

)
=

1

S0

|β|L
1
β

0 k
1− 1

β e
1−β
2

Vt

(
PS(S0k

∗, t) + (1− β)

∫ 1

0

yβ−2PS(S0yk
∗, t)dy

)

If we pick β = −1, which corresponds to an inverse ETF, we have

CL(k, t) =
k2

S0L0

eVt

(
PS(S0k

∗, t) + 2

∫ 1

0

y−3PS(S0yk
∗, t)dy

)
. (3.1.20)
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where k∗ =
(

k
L0
eVt

)−1

Using the same argument, for puts on a bullish LETF we have

PL(k, t) =
L0

S0

e
β−β2

2
Vtβ

(
(k∗)β−1PS(S0k

∗, t) + (β − 1)

∫ k∗

0

Kβ−2PS(S0K, t)dK

)
.

(3.1.21)

and for bearish LETF, we have

PL(k, t) =
L0

S0

e
β−β2

2
Vt |β|

(
(k∗)β−1CS(S0k

∗, t) + (1− β)

∫ ∞

k∗
Kβ−2CS(S0K, t)dK

)
.

(3.1.22)

We summarize the results as follows:

CL+(k, t) =
L0

S0

e
β−β2

2
Vtβ

(
(k∗)β−1CS(S0k

∗, t) + (β − 1)

∫ ∞

k∗
Kβ−2CS(S0K, t)dK

)
CL−(k, t) =

L0

S0

e
β−β2

2
Vt |β|

(
(k∗)β−1PS(S0k

∗, t) + (1− β)

∫ k∗

0

Kβ−2PS(S0K, t)dK

)
PL+(k, t) =

L0

S0

e
β−β2

2
Vtβ

(
(k∗)β−1PS(S0k

∗, t) + (β − 1)

∫ k∗

0

Kβ−2PS(S0K, t)dK

)
PL−(k, t) =

L0

S0

e
β−β2

2
Vt |β|

(
(k∗)β−1CS(S0k

∗, t) + (1− β)

∫ ∞

k∗
Kβ−2CS(S0K, t)dK

)
.

(3.1.23)

These four equations will be our major tools to price options on LETF with

respect to options on underlying ETF. We call S0k
∗ = S0

(
k
L0
e

β2−β
2

Vt

) 1
β

the “most

likely” strike. The reason is that if Lt goes to k at time t, S0k
∗ is the “most likely”

price of St. The same idea is used in index option pricing, where given a basket of

single name options, one would like to know the “most likely” level of the index if

every stock in the index does go to a set of strikes at maturity (see [11]). As we

can see, an option on the LETF could be decomposed into two parts: 1) a single

contract on the underlying ETF with the “most likely” strike 2) a continuous strip
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of options on the underlying ETF. We will see in later sections that part I is what

really matters. We will validate these four equations with numerical simulations

and market data in later sections. So far, we derive the four equations under the

assumption that volatility is deterministic. We will discuss how to extend it to the

stochastic volatility world in Chapter 4.

3.2 Closed Form Solution under Heston Model

Before we validate equation (3.1.23) with market data, we investigate the exis-

tence of a closed-form solution for a European call on LETF under Heston model.

Suppose σ is random, we can write the value of the option as

ψ(S, σ, V, t) = e−r(T−t)E

[(
L0

(
ST

S0

)β

eV (0,T ) − k

)+ ∣∣∣∣St = S, σt = σ, V (0, t) = V

]
(3.2.1)

where V (0, t) =
∫ t

0
(β−β2

2
σ2
s + ((1− β)r − f) + βλs)ds. We would like to write the

value of the option as a conditional expectation of another measure. For simplicity,

let’s assume that interest rates, expense ratios and cost of borrowing are all zero.

Thus V (0, t) =
∫ t

0
β−β2

2
σ2
sds and

ψ(S, σ, V, t)

= E

[(
L0

(
ST

S0

)β

eV (0,T ) − k

)+ ∣∣∣∣St = S, σt = σ, V (0, t) = V

]

= E

[(
Lt

(
ST

St

)β

eV (t,T ) − k

)+ ∣∣∣∣St = S, σt = σ, V (0, t) = V

]

= E

[
eV (t,T )

(
Lt

(
ST

St

)β

− ke−V (t,T )

)+ ∣∣∣∣St = S, σt = σ, V (0, t) = V

]
= ξ(S, σ, V, t)ϕ(S, σ, V, t), (3.2.2)

41



where

ξ(S, σ, V, t) = E[eV (t,T )|St = S, σt = σ, V (0, t) = V ] (3.2.3)

ϕ(S, σ, V, t) =

E

[
eV (t,T )

(
Lt

(
ST

St

)β
− ke−V (t,T )

)+ ∣∣∣∣St = S, σt = σ, V (0, t) = V

]
E[eV (t,T )|St = S, σt = σ, V (0, t) = V ]

(3.2.4)

We define a new probability measure

Ẽ[f(Xs, s ≤ T )] =
E[eV (0,T )f(Xs, s ≤ T )]

E[eV (0,T )]
(3.2.5)

Ẽ(·) is associated with a diffusion process and Ẽ[F |Xu, u ≤ s] = E[eV (t,T )F |Xs]

E[eV (t,T )|Xs]
. We

want to find out the PDE for ϕ,

ξ(S, σ, V, t)ϕ(S, σ, V, t) = ψ(S, σ, V, t)

ϕtξ + ϕξt = ψt

ϕtξ = ψt − ϕξt

For convenience, denote ν = σ2 and let L be the infinitesimal generator associated

with the systems of stochastic differential equations (Heston Model)



dS = S
√
νtdWt

dV = β−β2

2
νtdt

dνt = κ(θ − νt)dt+ c
√
νtdZt

E[dWtdZt] = ρdt

(3.2.6)
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That is

Lf(S, ν, V, t) = β − β2

2
ν
∂f

∂V
+ κ(θ − ν)

∂f

∂ν
+

1

2
νS2 ∂

2f

∂S2
+

1

2
νc2

∂2f

∂ν2
+ cSνρ

∂2f

∂S∂ν

(3.2.7)

ϕtξ = ψt − ϕξt

= −Lψ − β − β2

2
νψ − ϕ(−Lξ − β − β2

2
νξ)

= −Lψ + ϕLξ − β − β2

2
ν(ϕξ) +

β − β2

2
ν(ϕξ)

= −L(ϕξ) + ϕLξ

= −(ξLϕ+ ϕLξ + c2ν
∂ξ

∂ν

∂ϕ

∂ν
dt+ cSρν

∂ξ

∂ν

∂ϕ

∂S
dt) + ϕLξ

= −ξLϕ− c2ν
∂ξ

∂ν

∂ϕ

∂ν
dt− cSρν

∂ξ

∂ν

∂ϕ

∂S
dt

As a result, we have

ϕt + Lϕ+ c2ν
∂ξ
∂ν

ξ

∂ϕ

∂ν
+ cSρν

∂ξ
∂ν

ξ

∂ϕ

∂S
= 0, (3.2.8)

We find that, after changing of measure, the PDE has two extra terms: c2ν
∂ξ
∂ν

ξ
∂ϕ
∂ν

and cSρν
∂ξ
∂ν

ξ
∂ϕ
∂S
. That means there is a “drift” introduced by the change of measure.

Notice that ξ only depends on σ, we can solve the following to find ξ

dx = κ(θ − x)dt+ c
√
xdZt

ξ(x, t, T ) = E[e
β−β2

2

∫ T
t xsds|xt = x]
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The PDE for ξ(x, t) is

ξt + κ(θ − x)ξx +
1

2
c2xξxx +

β − β2

2
xξ = 0 (3.2.9)

Assuming the solution is of the form ξ(x, t, T ) = ea(t,T )x+b(t,T ) and substituting into

the PDE, we get a Ricatti equation



ȧ− aκ+ 1
2
c2a2 + β−β2

2
= 0

ḃ+ aκθ = 0

a(T ) = 0

b(T ) = 0

(3.2.10)

Assuming a = p
q
, we get a system of ODE for p and q,

 ṗ = κp+ β2−β
2
q

q̇ = 1
2
c2p

(3.2.11)

Solving the above two systems of equations, we have

 a(t, T ) = −β2−β
2

sinh γτ
γ cosh γτ+κ

2
sinh γτ

b(t, T ) = κθ(β2−β)
c2

ln
(

γe
κτ
2

γ cosh γτ+κ
2
sinh γτ

) (3.2.12)

where γ =

√
κ2+c2(β2−β)

2
and τ = T − t. The “drift” introduced by the change of

measure is c2ν ξx
ξ
= a(t, T )c2ν and cSρν ξx

ξ
= a(t, T )cSρ. Putting the “drift” back
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into the SDE, we have



dS = a(t, T )cSρdt+ S
√
νtdWt

dV = β−β2

2
νtdt

dνt = (κ− a(t, T )c2)( κθ
κ−a(t,T )c2

− νt)dt+ c
√
νtdZt

E[dWtdZt] = ρdt

(3.2.13)

This is a “Heston model” with a set of time-dependent parameters.

3.3 Conclusion

In this chapter, We find that the LETF can be treated as a power option on

the underlying ETF with a “time decay” factor. A European call/put option on

LETF can be decomposed into two parts: a single contract on the underlying ETF

with the “most likely” strike (tangent approximation) and a continuous strip of

options on the underlying ETF (tangent correction). We also derived a closed

form solution for a European call option on LETF under Heston model by using

a change of measure technique. In the next chapter, we seek a model-independent

approach to price options on LETFs relative to options on underlying ETFs.

45



Chapter 4

Relative Value Pricing of

Leveraged ETFs Options

4.1 Introduction

Following the discussion of Chapter 3, options on LETFs can be treated as options

on the underlying ETFs. As a result, there are three different option markets on

the underlying ETF: 1) options on the underlying ETF, 2) options on the bullish

LETF, 3) options on the bearish LETF. Theoretically, all the options should be

priced under the same risk-neutral measure. Recall formula (2.2.4)

Lt = L0

(
St

S0

)β

exp

(
((1− β)r − f) t+ β

∫ t

0

λtds+
β − β2

2

∫ t

0

σ2
sds

)
, (4.1.1)

where r is the reference interest rate, f is the expense ratio and λ is the cost of

borrowing. In practice, all the variables in (4.1.1) are observable except the cost

of borrowing λ. For the bullish LETFs, λ = 0, we have an explicit formula. We

consider three ways of pricing options on LETFs relative to the option on underly-

ing ETF: 1) We calibrate a stochastic vol model (Heston) to the underlying ETF
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option market and simulate future market scenarios (“paths”) using the calibrated

model. Prices of options on LETF are computed by averaging discounted cashflows

over the different paths. 2) We extend formulas 3.1.23 to the stochastic volatility

environment and compute the value of the option on LETF as a function of options

on the underlying ETF. 3) We present a non-parametric formula which links the

volatility skew of an LETF with the volatility skew of the underlying ETF based

on the observation that the realized variance of an LETF is always |β| times the

realized variance of the underlying ETF.

We will discuss the three approaches in later sections and compare our model

prices with mid-market prices. The results suggest that the implied volatility

curves we get from all the three approaches are consist with the market skew.

4.2 Heston Model Approach

The study has the following steps:

1. Clean the historical option price data obtained from Wharton Research Data

Services (WRDS)

2. Given a particular date, calibrate the Heston model to the underlying ETF

option market

3. Simulate sample paths from the calibrated Heston model and compute the

LETF prices using (2.1.3)

4. Compute the model price for options on LETF by averaging the discounted

cashflows over different paths and compare that with the mid-market price
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4.2.1 Exact Solution of Heston Model

Heston proposed the following model (1993) (see [12]):


dS = S

√
νtdWt

dνt = κ(θ − νt)dt+ σ
√
νtdZt

E[dWtdZt] = ρdt

(4.2.1)

The closed form solution of a European call option for the model is (see [12] or

[13])

C(St, νt, t, T ) = StP1 −Ke−(r−q)(T−t)P2 (4.2.2)

where

Pj(x, νt, T,K) =
1

2
+

1

π

∫ ∞

0

Re

(
e−iϕ ln(K)fj(x, νt, T, ϕ)

iϕ

)
x = ln(St)

fj(x, νt, T, ϕ) = exp[C(T − t, ϕ) +D(T − t, ϕ)νt + iϕx]

C(τ, ϕ) = (r − q)ϕiτ +
a

σ2

[
(bj − ρσϕi+ d)τ − 2 ln

(
1− gedτ

1− g

)]
D(τ, ϕ) =

bj − ρσϕi+ d

σ2

(
1− edτ

1− gedτ

)
g =

bj − ρσϕi+ d

bj − ρσϕi− d

d =
√

(ρσϕi− bj)2 − σ2(2ujϕi− ϕ2)

for j = 1, 2, and

u1 =
1

2
, u2 = −1

2
, a = κθ, b1 = κ+ λ− ρσ, b2 = κ+ λ

The formula looks a bit complicated, but actually quite explicit and can be

easily evaluated in MATLAB. The only part that might give a slight problem is
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the limits of the integral. This integral cannot be computed exactly, but could

be approximated with reasonable accuracy by using some numerical integration

technique. The method used here is the MATLAB function quad(@fun,a,b),

which uses the Adaptive Simpson’s Rules to numerically integrate @fun over [a,b].

It produces a result that has an error less than 10−6 or a user defined tolerance

level which is prescribed by a fourth argument. The market price of volatility risk

λ can be eliminated under the risk neutral measure. In fact, under the risk-neutral

measure, we have

a = κ∗θ∗, b1 = κ∗ − ρσ, b2 = κ∗, κ∗ = κ+ λ, θ∗ =
κθ

κ+ λ

As a result, given a set of parameters, we can compute the European call price

as precise as we want in MATLAB. This gives us a way to calibrate the Heston

model. We follow the same calibration procedure in [14]. We used the MATLAB

code computing the exact solution of an European call option under Heston model

provided in [14].

4.2.2 Numerical Results of the Heston Model Approach

All the data in this study is obtained from Wharton Research Data Services. For

this particular sample study, the reference date is Oct 1st, 2009 and the underlying

asset we choose is SPY, which is the ETF that tracks S&P 500 index. The leveraged

bullish ETF, SSO, issued by ProShares, tracks twice the daily performance of the

S&P 500 index. The reverse leveraged ETF, SDS, also issued by ProShares, tracks

twice the inverse of the daily performance of the S&P 500 index. There are three

different maturities in this study: 2009/10/17, 2009/11/21 and 2009/12/19. We

plotted the market implied volatilities for SPY, SSO, SDS in figure 4.1, 4.2 and
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4.3. We calibrate the Heston model to the SPY option market and the model

parameters for (4.2.1) are

κ = 11.6028, θ = 0.0754, c = 1.3209, ρ = −0.7698, ν0 = 0.0706 (4.2.3)

In our calibration, we don’t use any information on the LETF option markets (SSO

and SDS).

To check the goodness of fit, we calculate the prices of options on SPY using the

calibrated parameters (4.2.3) and compare with the market prices. The results are

shown in figure 4.4, 4.5 and 4.6. We notice that, for 2009/10/17 contact, Heston

model fails to capture the skew at both ends. It is well-known that stochastic

volatility model is not good for calibrating short-dated options. For the other two

maturities, 2009/11/21 and 2009/12/19, the calibration is excellent.

We simulate large number of paths for SPY using the calibrated Heston model

and calculate the option prices for both SSO and SDS by averaging the discounted

cashflows. We compare the model implied vol with the market vol. The results

are shown from figure 4.7 to figure 4.12. The model implied vol agrees with the

market implied vol well except for the front month contract (10/17/2009), due

to the drawback of the Heston model in short-dated option calibration discussed

above.
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Figure 4.1: depicts the implied volatilities of SPY options on 2009/10/01 as a
function of K/S for three different maturities.
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Figure 4.2: depicts the implied volatilities of SSO options on 2009/10/01 as a
function of K/S for three different maturities.
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Figure 4.3: depicts the implied volatilities of SDS options on 2009/10/01 as a
function of K/S for three different maturities. We see that the skew is inverted
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Figure 4.4: comparison of the implied volatilities from the market of SPY with
Heston model volatilities using parameter values in 4.2.3, maturity:2009/10/17
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Figure 4.5: similar to figure 4.4, maturity: 2009/11/21
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Figure 4.6: similar to figure 4.4, maturity: 2009/12/19
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Figure 4.7: we compute the model price by averaging the payoff over simulated
paths. Model vol is then computed by inverting the Black-Scholes formula. This
is SSO 2009/10/17 contact.
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Figure 4.8: similar to 4.7, SSO 2009/11/21 contact.
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Figure 4.9: similar to 4.7, SSO 2009/12/19 contact.
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Figure 4.10: similar to 4.7, SDS 2009/10/17 contact.
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Figure 4.11: similar to 4.7, SDS 2009/11/21 contact.
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Figure 4.12: similar to 4.7, SDS 2009/12/19 contact.
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4.3 Analytical Approximation Approach

Recall that under deterministic volatility assumption, we have (3.1.23) as follows:

CL+(k, t) =
L0

S0

e
β−β2

2
Vtβ

(
(k∗)β−1CS(S0k

∗, t) + (β − 1)

∫ ∞

k∗
Kβ−2CS(S0K, t)dK

)
CL−(k, t) =

L0

S0

e
β−β2

2
Vt |β|

(
(k∗)β−1PS(S0k

∗, t) + (1− β)

∫ k∗

0

Kβ−2PS(S0K, t)dK

)
PL+(k, t) =

L0

S0

e
β−β2

2
Vtβ

(
(k∗)β−1PS(S0k

∗, t) + (β − 1)

∫ k∗

0

Kβ−2PS(S0K, t)dK

)
PL−(k, t) =

L0

S0

e
β−β2

2
Vt |β|

(
(k∗)β−1CS(S0k

∗, t) + (1− β)

∫ ∞

k∗
Kβ−2CS(S0K, t)dK

)

where k∗ =
(

k
L0
e

β2−β
2

Vt

) 1
β

. A natural way to extend them to the stochastic volatil-

ity environment is to replace Vt =
∫ t

0
σ2
sds by Vt = E[

∫ t

0
σ2
sds] = (implied vol)2 × t.

That is replacing a random variable by its mean value. The implied vol should be

the implied vol of SPY, but that is strike dependent. Which implied vol should we

use? The idea is, if SSO goes to the strike k at maturity, the “most likely” vol for

SPY should be (implied vol of SSO at strike k)/2. Thus, if we have the skew of the

underlying option market, it is straightforward to obtain the skew of the LETF

option market using (3.1.23). All the information is available in the market and we

tested it with our SPY example. The results are shown from figure 4.13 to figure

4.18. This method actually gives a better fit than the Heston approach, especially

for the short-dated options. This shows that using Vt = (most likely vol)2 × t is a

good way of extending to the stochastic volatility environment.

57



0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

K/S

V
ol

at
ili

ty

Market vol vs Analytical Model vol for SSO (maturity: 2009/10/17)

 

 
mid vol
bid vol
ask vol
model vol

Figure 4.13: We derive the volatility skew of the LETF from formula 3.1.23 with
Vt =

∫ t

0
σ2
sds replaced by Vt = E[

∫ t

0
σ2
sds] = (implied vol)2 × t. This is SSO

2009/10/17 contact.
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Figure 4.14: similar to 4.13, SSO 2009/11/21 contact.
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Figure 4.15: similar to 4.13, SSO 2009/12/19 contact.
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Figure 4.16: similar to 4.13, SDS 2009/10/17 contact.
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Figure 4.17: similar to 4.13, SDS 2009/11/21 contact.
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Figure 4.18: similar to 4.13, SDS 2009/12/19 contact.
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4.4 Non-parametric Approximation Approach

In the Black-Scholes framework, what really matters is the volatility of the option.

In another word, if we want to price an option on LETF, all we have to do is

to get the correct volatility relative to the underlying ETF option market. For

example, suppose we have an at-the-money (ATM) call option on SSO, given the

information on SPY options market, what should be the volatility of this option?

We know that the realized volatility of SSO will be exactly twice of the realized

volatility of SPY because the daily return of SSO is double of the return of SPY.

According to (2.2.4), if Lt = L0, then St = S0

(
e

β2−β
2

Vt

) 1
β

̸= S0, which is the “most

likely” strike. Thus, in this example, the ATM option on SSO should have twice

of the volatility of the SPY option with strike S0k
∗ = S0

(
e

β2−β
2

Vt

) 1
β

. That is

σL(k) = 2σS(S0k
∗), (4.4.1)

where σL(k) is the volatility of the option on L with strike k and σS(S0k
∗) is the

volatility of the option on S with strike S0k
∗. This simple formula reveals the

hidden link between the volatility skew of the LETF and the volatility skew of the

underlying ETF. Because of its importance, we write it again in a more general

form.

σL(k) = |β|σS(S0k
∗), (4.4.2)

where β is the leverage ratio between L and S. So if we want to get the skew of

SSO, we compute the “most likely” strikes for all the available strikes of SSO in the

market and multiply the implied volatility of the corresponding “most likely” strike

options by two. We validate this idea with our SPY example and the results are

shown from figure 4.19 to figure 4.24. We see that this non-parametric approach

matches the market incredibly well despite its simplicity!
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4.5 Conclusion

In this chapter, we studied three different ways of pricing options on LETF relative

to options on underlying ETF. Our model option prices on LETF are in line with

market prices except minor problem with Heston approach in short-dated con-

tracts. The second approach utilizes the value decomposition formulas (3.1.23) we

developed in Chapter 3. The non-parametric approach is based on the observation

that the realized volatility of LETF is |β| times of that of the underlying ETF. By

finding the right corresponding strike, which is the “most likely” strike, we have

a simple way of relating the implied volatility skew of the LETF with the implied

volatility skew of the underlying ETF.

We will further use this idea of the “most likely” strike in the next chapter to

discuss how to hedge an LETF option with the underlying options.
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Figure 4.19: Based on the non-parametric approach, we get the implied volatility
skew of SSO by the “most likely” strike construction. This is SSO 2009/10/17
contact.
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Figure 4.20: similar to 4.19, SSO 2009/11/21 contact.
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Figure 4.21: similar to 4.19, SSO 2009/12/19 contact.
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Figure 4.22: similar to 4.19, SDS 2009/10/17 contact.

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

K/S

V
ol

at
ili

ty

Market vol vs Nonparametric vol for SDS (maturity: 2009/11/21)

 

 

mid vol
bid vol
ask vol
model vol

Figure 4.23: similar to 4.19, SDS 2009/11/21 contact.
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Figure 4.24: similar to 4.19, SDS 2009/12/19 contact.
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Chapter 5

Hedging Options on Leveraged

ETFs

The idea of relative-value pricing in the last chapter motivates us to think if there

exists a way of trading one option market against the other two option markets.

One possible way to do this is by regression. We could regress the payoff of the

option that we are interested in against the payoffs of options which are available for

hedging. For example, we can simulate a large number of paths for SPY and regress

the payoff of an option on SSO against the payoffs of options on SPY. Another

way is to hedge with the “most likely” contract. We present two examples in detail

and compared the two approaches. The results demonstrate that the hedging with

the “most likely” strike contact is the best hedge in terms of vega risk.

For a particular example, we study how to hedge call options on SSD or SDS

with options on SPY. We regressed the payoff of an LETF option on payoffs of

the underlying ETF options. We compare the hedging coefficients obtained by

regression with hedging ratio from formula (3.1.23). The result shows that the two

approaches give the same hedging coefficients and the “most likely” strike option
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Table 5.1: The call option on SSO under consideration
date maturity spot strike call/put bid ask implied vol

2009/10/01 2009/12/19 32.61 33 call 2.7 2.8 0.5243

is the best hedge. In fact, the integration term in (3.1.23) is insignificant in terms

of vega. Most of the vega risk is hedged by the “most likely” strike option.

5.1 Example 1: Hedging a SSO Call Option with

SPY Call Options

The SSO call option that we are interested in is shown in table 5.1. The analytical

formula which will be tested is the first one in (3.1.23). Since β = 2 here, we have

CL+(k, t) = 2
L0

S0

eVt

(
k∗CS(S0k

∗, t) +

∫ ∞

k∗
CS(S0K, t)dK

)
(5.1.1)

To verify that, we regress the payoff of this option against the options on SPY

with strike from 80 to 130. We further impose a condition that all the regression

coefficients have to be nonnegative. The result is shown in figure 5.1. It agrees with

(3.1.23) quite well. We have two peaks at strike 104 and 105, which corresponds to

the first term in (5.1.1). The reason for the existence of the two peaks (sometimes

there could be more than 2) is that we are using discrete strikes which are available

in the market rather than continuous strikes. The theoretical “most likely” strike

is S0k
∗ = S0

(
k
L0
e

β2−β
2

Vt

) 1
β

, where Vt = E[
∫ t

0
σ2
sds] = (implied vol)2 × t. As we

discussed in the last chapter, the correct implied vol to use is (implied vol of SSO

at strike k)/2. Thus, we have S0k
∗ = 102.97

(
33

32.61
e

4−2
2

0.52432

4
55
252

) 1
2

= 104.3637. The

theoretical hedging ratio is L0

S0
e

β−β2

2
Vtβ(k∗)β−1 = 0.6517 according to (5.1.1). From

the numerical result, the hedging coefficients for strike 104 and 105 are 0.3327
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Figure 5.1: depicts the hedging coefficients of SPY options. Notice the coefficients
peak at 104 and 105, which have values 0.3327 and 0.3165 respectively. The “most
likely strike” is k∗ = 104.3637. The R2 is 0.9989

and 0.3165 respectively. The sum of them is 0.6492, which is very close to the

theoretical hedging ratio.

If we weight the regression coefficients by the vega of the option, we find that

the vega exposure is concentrated on the “most likely” strike as shown in figure

5.2. In fact, the two “most likely” strikes covers over 95% of the vega exposure.

The vega of the target option is 12.6 with respect to underlying ETF volatility.

The sum of the vega of the two “most likely” options is 12.1. If one would think

of hedging the SSO call option with SPY call option of the same moneyness, he

would choose the strike to be 102.97 ∗ [1 + 0.5 ∗ (33/32.61 − 1)] = 102.35. This

option only covers 83.2% of the total vega exposure. In another word, the idea of

using the same moneyness hedge is not as good as the “most likely” strike hedging.
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Figure 5.2: depicts the hedging coefficients weighted by the option vegas. As we
can see, the “most likely” option covers most of the vega risk.

Table 5.2: The call option on SDS under consideration
date maturity spot strike call/put bid ask implied vol

2009/10/01 2009/12/19 42.43 43 call 3.9 4 0.5367

5.2 Example 2: Hedging a SDS Call Option with

SPY Put Options

Now let’s consider hedging a bearish LETF call option with the underlying ETF

put options. This corresponds to the second equation in (3.1.23). We have β = −2

in this case,

CL−(k, t) = 2
L0

S0

e−3Vt

(
(k∗)−3PS(S0k

∗, t) + 3

∫ k∗

0

K−4PS(S0K, t)dK

)
(5.2.1)
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Figure 5.3: depicts the hedging coefficients of SPY options. The coefficient in-
creases as the strike goes to 0, which agrees with equation 5.2.1. The R2 is 0.9914

Notice, in the second term, K−4 goes to infinity asK → 0. That means the hedging

coefficient explodes as the strike goes to 0. This is consistent with the result shown

in figure 5.3. The “most likely” strike is S0k
∗ = S0

(
k
L0
e3Vt

)− 1
2
= 99.97. To see

the picture in a better way, we weight the hedging coefficients by the vega of the

options. The result is shown in 5.4. As we can see, the vega risk is concentrated

near the “most likely” strike. The top three bars have strikes 99 ,100 and 101.

Again, the “most likely” contracts cover most of the vega risk.

Finally, we apply this hedging methodology to all the options of SSO and SDS

in the study (214 contacts in total). We summarize the result in Table 5.3. The

method provides a very good vega hedging.
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Figure 5.4: we weight the hedging coefficients by the vega of the options. Again,
the vega exposure is concentrated around the “most likely” strike, The “most likely
strike” is 99.97.

Table 5.3: Summary statistics of hedging with “most likely” strike
ticker maturity mean R2 average % of vega hedged standard dev

SSO 10/17/2009 0.9980 100.21% 1.95%
SSO 11/21/2009 0.9982 98.47% 1.40%
SSO 12/19/2009 0.9980 95.98% 5.76%
SDS 10/17/2009 0.9963 101.84% 1.04%
SDS 11/21/2009 0.9925 93.56% 3.59%
SDS 12/19/2009 0.9899 89.12% 3.77%
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5.3 Conclusion

In this chapter, we explored the idea of hedging an option on LETF with the option

on underlying ETF with the “most likely” strike. The result shows that the “most

likely” contracts are the right hedge in terms of vega risk and this is confirmed by

numerical regression. This is a consequence from the relationship in (4.4.2).
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