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DYNAMICS OF A CLOSED ROD WITH TWIST AND BEND
IN FLUID∗
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Abstract. We investigate the instability and subsequent dynamics of a closed rod with twist
and bend in a viscous, incompressible fluid. A new version of the immersed boundary (IB) method
is used in which the immersed boundary applies torque as well as force to the surrounding fluid and
in which the equations of motion of the immersed boundary involve the local angular velocity as well
as the local linear velocity of the fluid. An important feature of the IB method in this context is that
self-crossing of the rod is automatically avoided because the rod moves in a continuous (interpolated)
velocity field. A rod with a uniformly distributed twist that has been slightly perturbed away from its
circular equilibrium configuration is used as an initial condition, with the fluid initially at rest. If the
twist in the rod is sufficiently small, the rod simply returns to its circular equilibrium configuration,
but for larger twists that equilibrium configuration becomes unstable, and the rod undergoes large
excursions before relaxing to a stable coiled configuration.
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1. Introduction. Supercoiling (writhing) dynamics are observed, for example,
in the structural deformation of DNA [29, 30, 31] and in the growth of filaments of the
bacterium Bacillus subtilis [22, 23, 24]. The overwound or underwound double helix of
DNA occurs in DNA transcription, DNA replication, and formation of DNA loops in
protein-DNA interactions, which are essential in biological processes. The rod-shaped
bacterium B. subtilis elongates and then divides and separates as it grows, but some
cells fail to separate, and this results in supercoiling of the chain of attached bacteria.

Kirchhoff’s rod model has been employed to study these biomechanical phenom-
ena. The Kirchhoff model describes the rod as a three-dimensional space curve accom-
panied by an orthonormal triad (material frame, not to be confused with the Frenet
frame of differential geometry) at each point that keeps track of the local orientation
of the material. The theory of Kirchhoff for a thin elastic rod [7] has been developed
to find stable and unstable equilibrium configurations and to analyze the dynamics
of the supercoiling instability, with or without taking into account self-contact forces.
The study of a bent and twisted rod can be performed either in the absence of fluid
[4, 5, 14, 15, 16, 17, 19, 29, 33] or in the presence of fluid [3, 13, 32] in which the rod
is immersed.
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In this paper we focus on the supercoiling instability of a circular rod (i.e., a
ring) in a viscous fluid. We consider an elastic circular rod with an initially uniform
twist that adds up to an integer number of full turns so that the triad configuration
of our material frame is smoothly periodic. (The restriction to an integer number of
turns is not a fundamental one in the case of a rod with circular cross section, but we
make that restriction anyway to avoid dealing with a material frame described by a
multivalued triad.) The rod is assumed to be isotropic, homogeneous, and embedded
in a viscous incompressible fluid. We represent the rod as a space curve, and we keep
track of the orientation of an orthonormal triad (material frame) at each point of the
space curve so that we may know how much the rod twists or bends. The triad rotates
at the local angular velocity of the fluid and applies torque locally to the fluid.

In the standard Kirchhoff rod model, the material frame is not independent of
the space curve that defines the centerline of the rod. In particular, one of the vectors
of the triad is constrained to be tangent to the space curve. Another constraint that
is normally imposed on the Kirchhoff rod model is that of inextensibility: the rod
can bend and twist, but it cannot stretch. Because of the no-slip condition at the
boundary of a viscous fluid, these constraints imply rather complicated boundary
conditions in a fluid in which the rod is immersed. In particular, inextensibility
requires τ ·(τ ·∇u) = 0, where τ is the unit tangent to the rod and u is the velocity field
of the fluid, and keeping the triad aligned with the rod requires (∇×u)×τ = τ ·∇u.
These conditions on the fluid velocity field need to be imposed along the space curve
that defines the position of the rod. In this paper, however, we avoid these constraints
on the fluid velocity by allowing the rod to stretch and also by allowing the orientation
of the triad to deviate from alignment with the direction of the space curve. Instead of
imposing the above constraints exactly, we postulate an elastic energy function which
tends to maintain them. Thus, our rod is allowed to stretch slightly, and our triad is
allowed to deviate slightly from the alignment with the tangent direction to the rod.

The immersed boundary (IB) method [27] is used to analyze the dynamics and
the instability of a closed circular rod with twist and bend in fluid. The IB method
was created to study fluid dynamics of heart valves [25, 26, 28] and has been applied
to many problems mostly in biofluids [8, 9, 11, 12, 18, 20, 34]. The present work
requires a significant generalization of the IB method, and an important aim of the
paper is to introduce this generalization. (For a preliminary presentation, see [10].) In
the original IB method the immersed boundary moves at the local fluid velocity and
applies force locally to the fluid. Here we must keep track not only of the position of
each point of the immersed boundary, but also of the local orientation of the immersed
boundary, as expressed by the local material frame, or triad, that is carried along with
each material point of the immersed elastic rod. The equation of motion of each such
triad is that it rotates at the local angular velocity of the fluid. It follows from this
(by the duality of torque and angular velocity, which is analogous to that of force
and linear velocity) that the influence of the immersed boundary on the fluid must be
expressed in terms of torque as well as force. The generalized IB method discussed
herein is therefore characterized by two features: (1) that the local angular velocity of
the fluid at the immersed boundary is evaluated along with the local linear velocity of
the fluid, and (2) that the immersed boundary applies torque as well as force to the
surrounding fluid. We show herein how to do this in a mathematically consistent way,
such that the discretized power (which involves all four of the variables force, linear
velocity, torque, and angular velocity) applied by the immersed boundary to the fluid
has the same value whether it is computed in Lagrangian or in Eulerian variables. A
limitation of the proposed method, at least in its current form, is that it is only first
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order accurate. This is shown by an empirical convergence study.
One of the main issues in modeling supercoiling phenomena is self-contact, in

which one point of the rod touches another point on the rod. It is usually necessary
in this situation to prescribe self-contact forces which do not allow the rod to pass
through itself. However, the generalized IB method combined with the unconstrained
Kirchhoff rod theory which will be described in this paper has the ability to prevent
self-crossing without the prescription of special conditions. In the present context
the rod does not go through itself because of the continuity of the interpolated fluid
velocity field (see section 3), which means there is no need to add artificial conditions
that prevent self-crossing. This is rigorously true in the continuous IB formulation of
the problem and remains true in practice if discretization parameters are appropriately
chosen.

In section 2, we describe the balance equations of force and moment, and we
discuss the equilibrium configurations of a closed circular rod in a horizontal plane.
A sinusoidal perturbation is introduced to study the instability of elastic rods. The
sinusoidally perturbed rod, in a fluid at rest, will be used as an initial condition in
our simulations. The IB method is both a mathematical formulation and a numerical
method that will describe the interaction between a bent, twisted rod and the fluid
in which it is immersed. The mathematical formulation will be stated in section 3
followed by the description of the numerical scheme in section 4. In section 5, numer-
ical results concerning equilibria of a closed rod will be discussed. We present various
shapes of supercoiled equilibrium configurations depending on an intrinsic twist, per-
turbation parameter, and the ratio of the bend and twist moduli. The paper concludes
in section 6. An appendix is provided which describes the unconstrained Kirchhoff
rod model that is used in this work.

2. Equilibrium configuration of a twisted ring. Because of the nonstan-
dard features of our Kirchhoff rod model, as described above, we need to derive the
equilibrium configuration of a twisted circular rod. The configuration that we find will
be close to the standard one (see [21], but see comment below) and will approach the
standard equilibrium configuration as the stretch modulus b3 and the shear force con-
stants b1 and b2 all approach infinity. Another purpose of this section is to introduce
our rod model, before putting it in fluid, and to state its governing equations.

An elastic rod can be represented by a space curve X(s) together with an or-
thonormal director basis {D1(s),D2(s),D3(s)}, where s is a Lagrangian parameter
(not necessarily arclength) along the rod. It is assumed that the rod has a circu-
lar cross section with constant radius. The triad {D1(s),D2(s),D3(s)} is a material
frame at each point of the rod subject to the constraints Di · Dj = δij , i, j = 1, 2, 3.
In the standard Kirchhoff rod model, one of the triad vectors (usually D3) is con-
strained to point in the direction of the tangent vector ∂X

∂s , but we do not impose this
constraint here. Instead we provide forces that tend to keep D3 aligned with ∂X

∂s , as
described below.

The force F and moment N transmitted across a section of the rod can be ob-
tained by averaging the stresses acting across that section. Balance of momentum
and angular momentum yield

0 = f +
∂F
∂s
,(1)

0 = n +
∂N
∂s

+
∂X
∂s

× F,(2)
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where f and n are force per unit length as measured by the parameter s and torque
per unit length as measured by the parameter s applied to the rod, respectively [1, 21].
(Recall that s is not arclength in general. The variables f and n are densities with
respect to the measure ds.)

The internal force and moment on the perpendicular cross section, F, N, and also
the applied force density f and the torque density n may be expanded in the basis
{D1,D2,D3} as

F = F 1D1 + F 2D2 + F 3D3,(3)

N = N1D1 +N2D2 +N3D3,(4)

f = f1D1 + f2D2 + f3D3,(5)

n = n1D1 + n2D2 + n3D3,(6)

and the constitutive relations of the version of the Kirchhoff rod used here are as
follows:

N1 = a1
∂D2

∂s
· D3, N2 = a2

∂D3

∂s
·D1, N3 = a3

∂D1

∂s
· D2,(7)

F 1 = b1D1 · ∂X
∂s

, F 2 = b2D2 · ∂X
∂s

, F 3 = b3

(
D3 · ∂X

∂s
− 1
)
,(8)

where a1 and a2 are the bending moduli of the rod about D1 and D2, respectively,
and where a3 is the twisting modulus of the rod. These moduli are standard in the
Kirchhoff rod model. Note that a1 = a2 in the case of a rod with a circular cross
section and axially symmetric material properties. The constitutive equations (8) are
the means by which we approximately enforce the constraints that s = arclength and
that D3 should point in the same direction as ∂X

∂s . As we show in the appendix,
the above unconstrained version of the Kirchhoff rod model can be derived from a
variational argument in which we postulate an elastic energy of the form

E =
1
2

∫ [
a1

(
dD2

ds
·D3

)2

+ a2

(
dD3

ds
·D1

)2

+ a3

(
dD1

ds
·D2

)2

(9)

+ b1

(
D1 · dX

ds

)2

+ b2

(
D2 · dX

ds

)2

+ b3

(
D3 · dX

ds
− 1
)2
]
ds.

To find an equilibrium configuration of a circular rod in a horizontal plane we
introduce cylindrical coordinates (r, θ, z) with unit vectors (r(θ),θ(θ), z). Recall that

r(θ) = (cos θ, sin θ, 0),(10)

θ(θ) = (− sin θ, cos θ, 0),(11)

z = (0, 0, 1),(12)
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and r′(θ) = θ(θ),θ′(θ) = −r(θ). Let s = r0θ, 0 ≤ s ≤ 2πr0, and then construct the
configuration X(s) and the orthonormal triad {D1(s),D2(s),D3(s)} as follows:

X(s) = r1r(s/r0),(13)

D3(s) = (cosβ)θ(s/r0) + (sinβ)z,(14)

E(s) = −(sinβ)θ(s/r0) + (cos β)z,(15)

D1(s) = cos(ps/r0)E(s) + sin(ps/r0)r(s/r0),(16)

D2(s) = − sin(ps/r0)E(s) + cos(ps/r0)r(s/r0),(17)

where β is a constant (to be determined below) and p is the integer which determines
the density of twist uniformly distributed along the rod. The reason we restrict p
to integer values is so that the triad will be continuous at s = 0, which is the same
point as s = 2πr0. For an axially symmetric rod, there is no physical discontinuity
if we choose noninteger p, but this case needs to be handled with a triad that is not
single-valued, and we avoid that situation here. The vector D3 lies on the tangent
plane spanned with azimuthal and axial components but slightly tilted away from the
tangent vector to the rod X(s). The vector E(s) is a useful reference vector orthogonal
to D3 within the plane spanned by θ and z.

For simplicity, we consider an isotropic rod in this paper, i.e., a1 = a2 ≡ a, and
we also assume that b1 = b2 = b3 ≡ b.

By substituting the above formulae for X(s), D1(s), D2(s), and D3(s) into the
constitutive relations (7) and (8), we can find formulae for F(s) and N(s). These
results in turn can be substituted into the equilibrium equations (1) and (2) in the
absence of any applied forces or moments, i.e., with f(s) and n(s) both equal to zero.
It turns out that the two equilibrium equations are satisfied if and only if

r1 = r0 cosβ,(18)

sinβ = − a3p

br20 + a3 − a
.(19)

For large b, β is a small angle, which implies that the triad constructed above is
nearly aligned with the rod, and also that r1 is just slightly smaller than the unstressed
radius r0. In the limit b→ ∞, we recover the standard circular equilibrium of a twisted
Kirchhoff ring. (See Figure 1.)

The behavior of F(s) in the solution constructed above, and indeed in the standard
circular equilibrium of a twisted Kirchhoff ring, is perhaps somewhat unexpected, and
we comment on it here. The first equilibrium equation states that F(s) has to be
constant, independent of s, and one might then be tempted to conclude that F has
to be zero, by symmetry. This conclusion is incorrect. What we actually find is that

F = −b(sinβ)z(20)

=
ba3p

br20 + a3 − a
z.

As b → ∞, F → (a3p/r
2
0)z. Thus, the constant vector F, which represents the

force transmitted across a section of the rod, points normal to the horizontal plane
in which the rod lies. This seems strange (what determines whether the force is up
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(a) p = 2 (b) p = 5

Fig. 1. Examples of equilibrium configurations of twisted rings with only D1 shown. The
parameter p is the number of twists.

or down?) until we recall that F(s0) is the force applied by the part of the rod for
which s is slightly greater than s0 to the part of the rod for which s is slightly less
than s0 across the section of the rod at s = s0. A force of the same magnitude but
pointing in the opposite direction is applied by the part of the rod with s slightly less
than s0 to the part with s slightly greater than s0, so it is merely the direction in
which we choose to traverse the rod that determines whether F points up or down.
Nevertheless, this result is sufficiently peculiar that it led Love [21, p. 417] to state
erroneously, “and the shearing force at any section is directed towards the center of
the circle.” This sounds reasonable, considering the symmetry of the problem, but
it clearly cannot be correct, as it violates the equilibrium condition that F must be
constant!

In computer simulations, however, we use a perturbed configuration as an initial
configuration to see whether the equilibrium configuration constructed above is stable
or unstable. A sinusoidal perturbation can be obtained by making the following
substitutions in the formulae for D1 and D2:

sin
(
ps

r0

)
→ sin

(
ps

r0
+ ε sin

s

r0

)
,(21)

cos
(
ps

r0

)
→ cos

(
ps

r0
+ ε sin

s

r0

)
,(22)

where ε is a perturbation parameter (see Figure 2).

3. Mathematical formulation. The equations of motion for a bent, twisted
rod immersed in a viscous incompressible fluid are stated in this section. They involve
both Eulerian and Lagrangian variables. The Eulerian variables are used to describe
the fluid, and the Lagrangian variables are used to describe the immersed rod. These
two types of variables may be interconverted by means of integral transformations
that involve a smoothed version of the three-dimensional Dirac delta function, as will
be seen below.

We consider a viscous, incompressible fluid governed by the Navier–Stokes equa-
tions, and a closed bent and twisted rod immersed in that fluid. The immersed rod is
represented as a one-dimensional closed curve with an associated orthonormal triad
at each point of the curve. In describing the immersed rod, we use the same notation
as in the previous section. There, f(s)ds was the force applied by some unspecified
external agent to the arc ds of the rod. Here, that external agent is the fluid, and
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(a) (b)

Fig. 2. Sinusoidal perturbation in {D1,D2} when p = 2, ε = 1. (a) sine function (solid) and
its perturbation (dotted) (see (21)). (b) cosine function (solid) and its perturbation (dotted) (see
(22)).

therefore (according to Newton) −f(s)ds is the force applied by the arc ds of the rod
to the fluid. Similarly, −n(s)ds is the torque applied by the arc ds of the rod to the
fluid.

The interaction of a viscous incompressible fluid with a thin elastic rod presents
the following conceptual difficulty: on the one hand, it seems natural to represent
the rod as a space curve (with its associated triad) as in the previous section. On
the other hand, it is impossible to describe the interaction of a space curve with a
three-dimensional fluid, since the application of a finite force per unit length along a
curve in such a fluid results in a velocity field that is infinite on that curve. (This
is in sharp contrast to the case of a surface on which the application of finite force
per unit area results in a finite velocity everywhere, including on the surface itself.
The difference between these two cases is that the surface is codimension 1, whereas
the curve is codimension 2.) Thus, we must somehow assign a cross-sectional radius
to the space curve that represents the bent, twisted rod. In the present work, this
will be done by replacing the Dirac delta function that appears in the interaction
equations of the IB method by a smoothed approximation to the delta function that
we denote δc, where the subscript c denotes the order of magnitude of the support
of the smoothed delta function. The specific form of δc will be specified below. In
typical applications of the IB method, the mathematical formulation of the problem
involves the true Dirac delta function, and a smoothed approximation to the delta
function makes its appearance only at the level of the spatially discretized equations.
Here, we need the smoothed approximation from the outset for our formulation to
make sense, and it is important to keep in mind that c is a physical parameter of the
problem, as it determines the effective radius of the rod. In practice, we choose the
meshwidth h of the lattice on which the Navier–Stokes equations are solved equal to
c in most of our simulations, but we also set it equal to c/2 for comparison, in order
to check the convergence of our scheme. This convergence test is described at the end
of section 5.

Related to the above is the conceptual issue of the mass of the rod. We assume
in the present work that the rod is neutrally buoyant, i.e., that its mass is equal
to the mass of the fluid displaced. In an IB computation, however, the fluid is not
displaced; it permeates the volume of radius O(c) that surrounds the space curve that
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represents the rod. Thus, in our computational method, the fluid supplies the mass
that is physically attributable to the rod, and the consistent way to model the space
curve (with its associated triad) that represents the elasticity of the rod is as though
it were massless. Since a massless structure is always at equilibrium, we may use
unchanged the force balance equations of the previous section to describe the elastic
component of our model system.

The coupled system of equations of the rod and the fluid is as follows:

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+ μ∇2u + f b,(23)

∇ · u = 0,(24)

0 = f +
∂F
∂s
,(25)

0 = n +
∂N
∂s

+
∂X
∂s

× F,(26)

F = F 1D1 + F 2D2 + F 3D3,(27)

N = N1D1 +N2D2 +N3D3,(28)

N1 = a1
∂D2

∂s
· D3, N2 = a2

∂D3

∂s
·D1, N3 = a3

∂D1

∂s
· D2,(29)

F 1 = b1D1 · ∂X
∂s

, F 2 = b2D2 · ∂X
∂s

, F 3 = b3

(
D3 · ∂X

∂s
− 1
)
,(30)

(31) fb(x, t) =
∫

(−f(s, t)) δc(x − X(s, t))ds+
1
2
∇×

∫
(−n(s, t))δc(x − X(s, t))ds,

(32)
∂X(s, t)
∂t

= U(s, t) =
∫

u(x, t) δc(x − X(s, t))dx,

(33) W(s, t) =
1
2

∫
(∇× u)δc(x − X(s, t))dx,

(34)
∂Di(s, t)

∂t
= W(s, t) × Di(s, t), i = 1, 2, 3.

Equations (23)–(24) are the incompressible Navier–Stokes equations written in
Eulerian variables (x, t), where x = (x1, x2, x3) are fixed Cartesian coordinates and t
is the time. The motion of the fluid is subject to the body force fb(x, t), which here
represents the force per unit volume applied to the fluid by the immersed rod. The
vector field u(x, t) is the fluid velocity, and p(x, t) is the fluid pressure. The constant
parameters ρ and μ are the fluid density and the fluid viscosity, respectively.

The equilibrium equations (25)–(30) of the previous section are employed to de-
scribe the force and torque of the immersed rod in terms of the space curve and its
associated triad

(35)
(
X(s, t),D1(s, t),D2(s, t),D3(s, t)

)
.
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All variables in these equilibrium equations are functions of the material coordinate s
(not necessarily arclength) and the time t. These are therefore Lagrangian variables.
As in the previous section, F(s, t) and N(s, t) are the force and moment (couple) trans-
mitted across the section of the rod at s. The expressions −f(s, t)ds and −n(s, t)ds
are the force and torque applied by the arc ds of the rod to the fluid.

Equations (31)–(33) describe the interactions between the fluid and the rod.
These interaction equations connect the Lagrangian and Eulerian variables via a three-
dimensional smoothed Dirac delta function δc(x) = δc(x1)δc(x2)δc(x3), which acts as
a kernel of the integral transformations that appear in the interaction equations. The
particular choice of δc(x) that we make in this work is the following:

(36) δc (x) =
1
c3
φ
(x1

c

)
φ
(x2

c

)
φ
(x3

c

)
,

where x = (x1, x2, x3) and the function φ is given by

φ(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3 − 2|r| +√1 + 4|r| − 4r2

8
if |r| ≤ 1,

5 − 2|r| −√−7 + 12|r| − 4r2

8
if 1 ≤ |r| ≤ 2,

0 if |r| ≥ 2.

The motivation for this particular construction is discussed in [28, 27]. Without going
into all of the details, we note in particular that δc(x−X) is a continuous function of x
with continuous first derivatives and with support equal to a cube of edge 4c centered
on X. Whenever c is an integer multiple of h, the function δc(x − X) satisfies two
identities that are of particular importance in this work. Note in particular that these
identities hold for all X: ∑

j

δc(jh− X)h3 = 1,(37)

∑
j

(jh− X)δc(jh− X)h3 = 0,(38)

where j is any vector with integer components and h is the meshwidth of the fluid
grid that will be introduced in the next section. As mentioned above, these identities
hold only if c/h is a positive integer, and we shall choose h so that this is the case.
The significance of the above identities will become apparent when we prove, in the
next section, that force and torque generated by the rod are correctly applied to the
fluid by our numerical scheme.

In (31), the first term describes how to apply the force of the rod to the fluid
and the second term describes how to apply the torque of the rod to the fluid. To
understand the meaning of (31), take the dot product of both sides with an arbitrary
velocity field u(x, t) and integrate by parts in the second term. (Note in particular
that the overall sign of the second term does not change upon this integration by
parts because the usual sign change is compensated by a change of sign involving the
antisymmetry of the cross product.) The result is

(39)
∫

u(x, t) · fb(x, t)dx =
∫

(−f(s, t)) · U(s, t)ds+
∫

(−n(s, t)) · W(s, t)ds,
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where U(s, t) is the locally averaged fluid velocity defined by (32) and W(s, t) is the
locally averaged angular velocity of the fluid as defined by (33). Thus we have the
result that the rate at which work is done on the fluid by the immersed rod is as it
should be in terms of the force and moment applied to the fluid by the rod. Since this
holds for an arbitrary velocity field, it establishes the validity of (31). Equation (32)
is the no-slip condition of a viscous fluid, which means that the rod moves at the local
fluid velocity. Here, the local fluid velocity is averaged in a manner determined by the
smoothed Dirac delta function. Equation (33) states that angular velocity W(s, t) of
the triad associated with the point s of the rod can be obtained as a local average
of the angular velocity of the fluid, 1

2 (∇× u). Again, the smoothed delta function is
used to determine the appropriate weighted average of the local fluid velocity.

We keep track of the orientation of the triad at each point of the rod by (34).
The triad rotates at the local angular velocity of the fluid and applies torque locally
to the fluid.

4. Numerical method. In this section, we describe the numerical IB method
that we use to solve the equations of motion (23)–(34) as formulated in the preceding
section.

The spatial discretization of the Eulerian (fluid) variables is different from that
of the Lagrangian (rod) variables. For the fluid variables such as u, p, and fb, we
use a fixed cubic lattice of meshwidth h. This lattice, denoted gh, is the set of points
gh = {x : x = jh}, where j = (j1, j2, j3) ∈ Z

3, i.e., a vector with integer components.
Although our discretization makes sense on an infinite grid, in practice we use a lattice
that is periodic in all three space directions. Thus 0 ≤ ji ≤ N − 1 for i = 1, 2, 3, and
it is understood that arithmetic involving any of the ji is to be done modulo N . The
periodicity facilitates the use of the discrete Fourier transform and is less disruptive
than other boundary conditions one might consider. In particular, a periodic domain
(3-torus) is translation invariant, and all grid points are equivalent when periodic
boundary conditions are used.

Spatial discretization of the immersed rod is accomplished by first introducing a
fixed uniform interval 	s of the Lagrangian variable s of the rod, and then setting
sk = k	s, for k = 0, 1, . . . , l − 1, where l	s is the unstressed length of the rod, and
it is understood that all arithmetic on k is to be done modulo l, since the rod is
in fact closed. For some variables, we shall consider half-integer as well as integer
values of the index k. The Lagrangian variables X, D1, D2, D3, f , and n will all
be defined at points sk for integer values of k, and for such variables we shall use
the notation Xk = X(k	s), etc. We shall need, however, to define auxiliary Di at
sk for half-integer values of k, and the variables F and N will also be defined at sk

for half-integer values of k. For such variables, we shall write Di
k+ 1

2
, etc., where k is

again restricted to integer values.
Let the superscript n be the time-step index, so that un denotes the fluid velocity

field at time t = n	t, where 	t is time-step duration, and similarly for all other
variables. We shall describe here the step from time level n to n + 1. To avoid
cluttering the notation, however, we omit the time index in any equation where all
of the variables are to be evaluated at time level n, i.e., at the beginning of the time
step. This includes all of the equations involving the elasticity of the rod, which will
be discussed first. The time index will make its appearance when we come to the fluid
equations and will continue to appear in the equations for updating the configuration
of the rod.

The first thing that needs to be done in each time step is to compute the auxiliary
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triad at the point sk+ 1
2

from the triads at sk and sk+1, where k is any integer.
Intuitively, this is an interpolation process, but we cannot use anything like linear
interpolation, since the result would not be an orthonormal triad. Therefore, we
proceed as follows.

A rotation (orthogonal matrix) which maps from the triad Dα
k to the triad Dα

k+1

(α = 1, 2, 3) is uniquely defined by

(40) A =
3∑

α=1

Dα
k+1(D

α
k )T ,

that is,

(41) A = (aij) =
3∑

α=1

(Dα
k+1)i(Dα

k )j ,

where T stands for the transpose of a matrix and i, j = 1, 2, 3; k = 0, . . . , l − 1.
This matrix A can be described as a rotation about a certain axis through a

certain angle. To remove the ambiguity about the angle, we choose the one with
smallest magnitude, which is also the one lying in the interval (−π, π].

In order to find an orthonormal triad {D1
k+ 1

2
,D2

k+ 1
2
,D3

k+ 1
2
} for the point sk+ 1

2

we can take the principal square root of the matrix A, which is a rotation about
that same axis by half the angle (and make sure that half the angle should be in the
interval (−π/2, π/2]), and apply this rotation to each vector of the triad at sk; i.e.,

(42) Di
k+ 1

2
=

√
ADi

k,

where i = 1, 2, 3. This will give the desired triad at sk+ 1
2
.

The next step is to evaluate the force Fk+ 1
2

and the couple or moment Nk+ 1
2

that are transmitted across the section of the rod at sk+ 1
2
. The computations are as

follows. First evaluate the components

F 1
k+ 1

2
= b1D1

k+ 1
2
· Xk+1 − Xk

	s ,(43)

F 2
k+ 1

2
= b2D2

k+ 1
2
· Xk+1 − Xk

	s ,(44)

F 3
k+ 1

2
= b3

(
D3

k+ 1
2
· Xk+1 − Xk

	s − 1
)
,(45)

N1
k+ 1

2
= a1

D2
k+1 − D2

k

	s · D3
k+ 1

2
,(46)

N2
k+ 1

2
= a2

D3
k+1 − D3

k

	s · D1
k+ 1

2
,(47)

N3
k+ 1

2
= a3

D1
k+1 − D1

k

	s · D2
k+ 1

2
,(48)

which are discretizations of (29)–(30), and then assemble the vectors

Fk+ 1
2

= F 1
k+ 1

2
D1

k+ 1
2

+ F 2
k+ 1

2
D2

k+ 1
2

+ F 3
k+ 1

2
D3

k+ 1
2
,(49)

Nk+ 1
2

= N1
k+ 1

2
D1

k+ 1
2

+N2
k+ 1

2
D2

k+ 1
2

+N3
k+ 1

2
D3

k+ 1
2
.(50)
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What this last step means operationally is to evaluate the Cartesian components of
these vectors. This is very important for what follows, since we want to compare
these vectors at different locations (see below), and this cannot be done merely by
comparing their components in the basis given by the moving triad.

With Fk+ 1
2

and Nk+ 1
2

known for all k, we can proceed to the computation of −fk
and −nk by the following discretization of (25)–(26). These quantities, multiplied in
each case by ds, give the force and torque applied to the fluid by the segment of the
rod corresponding to the interval ds centered on sk:

−fk =
Fk+ 1

2
− Fk− 1

2

	s ,(51)

−nk =
Nk+ 1

2
− Nk− 1

2

	s +
1
2

(
Xk+1 − Xk

	s × Fk+ 1
2

+
Xk − Xk−1

	s × Fk− 1
2

)
.(52)

This completes the purely Lagrangian part of the computation during any one time
step.

The force and torque generated by the elasticity of the rod can now be applied
to the fluid by creating the body force fb on the fluid grid defined as follows:

(53) fb(x) =
∑

k

(−fk) δc(x − Xk)	s+
1
2
G0 ×

(∑
k

(−nk) δc(x − Xk)	s
)
,

where x ∈ gh and δc has been defined in the preceding section. Recall in particular
the restriction that c/h must be a positive integer.

Here, and throughout the paper, G0 denotes the central difference approximation
to ∇ defined on the Eulerian grid gh by G0 = (G0

1, G
0
2, G

0
3), where G0

α is the standard
central difference operator in the spatial direction α = 1, 2, 3 defined by

(54)
(
G0

αψ
)
(x) =

ψ(x + heα) − ψ(x − heα)
2h

,

where {e1, e2, e3} is a fixed orthonormal basis that specifies the orientation of the
Cartesian lattice on which the Eulerian variables of our fluid mechanics computation
are defined. In the following we shall also make use of the forward and backward
difference operators in each of the three spatial directions α = 1, 2, 3. These are
defined by

(
G+

αψ
)
(x) =

ψ(x + heα) − ψ(x)
h

,(55)

(
G−

αψ
)
(x) =

ψ(x) − ψ(x − heα)
h

.(56)

Up to this point, all quantities have been defined at time level n, i.e., at the
beginning of the time step, and the superscript n indicating the time level has been
omitted. Here, we begin to describe the computation of variables defined at time level
n+1 from those at time level n, so we include the superscript that indicates the time
level from now on.
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With un and (fb)n known, we solve the discretized Navier–Stokes equations for
the unknowns (un+1, pn+1):

ρ

(
un+1 − un

	t +
3∑

α=1

un
αG

±
α un

)
+ G0pn+1 = μ

3∑
α=1

G+
αG

−
α un+1 + (fb)n,(57)

G0 · un+1 = 0.(58)

In these equations, the operator G0p approximates ∇p, and G0 ·u approximates ∇·u.
In the viscous term, the expression

∑3
α=1G

+
αG

−
α is a difference approximation to the

Laplace operator. In the convection term, the expression
∑3

α=1 uαG
±
α , where

uαG
±
α =

{
uαG

+
α , uα < 0,

uαG
−
α , uα > 0,

is an upwind difference approximation to u · ∇. We use the FFT (fast Fourier trans-
form) to solve the system (57)–(58). Note that this system is linear with constant
coefficients in the unknowns (un+1, pn+1), the nonlinear terms being known since
they are evaluated at time level n. The FFT therefore uncouples this system into N3

separate 4 × 4 systems, which are easily solved.
Once un+1 is known, the boundary points are moved at the locally averaged fluid

velocity in this new velocity field. This is done as follows:

(59)
Xn+1

k − Xn
k

	t =
∑
x

un+1(x)δc(x − Xn
k )h3,

where
∑

x denotes the sum over the computational lattice x ∈ gh.
The last step of the numerical procedure is to update the orientation of the triad

at each point sk of the rod. Each such triad rotates at the local angular velocity of
the fluid. Recall that the local angular velocity of a fluid element is 1

2∇ × u. We
discretize this as 1

2G
0 × u, and compute its local average at the point sk of the rod

as follows:

(60) Wn+1
k =

1
2

∑
x∈gh

(G0 × un+1)(x)δc(x − Xn
k )h3.

Now let R(e, θ) be the orthogonal matrix that describes a rotation through an
angle θ about the axis specified by the unit vector e. We can write R explicitly as
follows:

(61) R(e, θ) = (cos θ)I + (1 − cos θ)eeT + (sin θ)(e×),

where (e×) is the antisymmetric 3 × 3 matrix defined by (e×)v = e × v, for any v.
We emphasize that e is a unit vector. In terms of R, the rotation that we need to
apply to the triad located at point sk of the rod is given by

(62) (Di
k)n+1 = R

(
Wn+1

k

|Wn+1
k | , |W

n+1
k |	t

)
(Di

k)n,

where i = 1, 2, 3 and k = 0, . . . , l − 1. Thus, we rotate each triad at the locally
averaged angular velocity of the fluid for an amount of time equal to 	t, and this
completes the time step.
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Note that the above rotation is free in the sense that we do not constrain the
vector D3 to be tangent to the curve that describes the axis of the rod. Insofar as
D3 deviates from that direction, however, forces are called into play that tend to
correct the misalignment. A similar remark may be made concerning the update of
the position X(s). There is nothing in the updating procedure that constrains s to
be arclength. Insofar as s deviates from arclength, however, forces develop that tend
to correct for those deviations.

We conclude this section with a proof that the body force fb defined by (53)
applies the correct total force and also the correct total torque to the fluid. To
avoid complications associated with the definition of torque on a periodic domain,
we imagine here the fluid domain is the whole three-dimensional Euclidean space
and that gh is an unbounded computational lattice. Since the rod is described by a
continuous closed curve, it lives at any given time within a bounded subset of this
domain. Because δc has bounded support, it is then clear that fb has bounded support
as well. Thus, all of the sums that appear in the proof have only a finite number of
nonzero terms, so there are no issues of convergence, and we do not have to worry
about boundary terms when we do summation by parts. The proof given here relies
in an essential way on the identities (37)–(38) stated in the previous section for δc,
and the proof therefore requires the assumption that c/h is a positive integer.

First consider the total force applied by the rod to the fluid. We sum (53) over
gh and multiply by h3. Now it is easy to see that

(63)
∑
x∈gh

(G0 × v)(x)h3 = 0

for any v(x) with bounded support, so the second term in fb makes no contribution.
We are left with

(64)
∑
x∈gh

fb(x)h3 =
l−1∑
k=0

(−fk)
∑
x∈gh

δc(x − Xk)h3	s =
l−1∑
k=0

(−fk)	s.

In the first step, we have interchanged the order to the two summations, and in the
second step we have made use of (37).

Next we consider the more complicated case of the total torque. This time we ap-
ply the operator x× to both sides of (53) before summing over x ∈ gh and multiplying
by h3. We consider the two terms on the right-hand side separately. In analyzing the
first term it is helpful to note that the two identities (37) and (38) can be combined
to yield

(65)
∑
x∈gh

xδc(x − X)h3 = X.

Making use of this result, we see that

∑
x∈gh

x ×
l−1∑
k=0

(−fk)δc(x − Xk)	sh3 =
l−1∑
k=0

(∑
x∈gh

xδc(x − Xk)h3

)
× (−fk)	s

=
l−1∑
k=0

Xk × (−fk)	s.(66)
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In the case of the second term, it is helpful to work in components. The α component
of the second term is

(67)
1
2
εαβγεγλμ

∑
x∈gh

xβG0
λ

l−1∑
k=0

(−nμ
k )δc(x − Xk)	sh3,

where we employ the summation convention and the totally antisymmetric symbol ε.
This expression can be simplified by making use of summation by parts, in which we
change the sign and apply G0

λ to xβ instead of the expression on its right. It is easy
to see that G0

λx
β = δλβ . Now

(68) εαβγεγλμδβλ = (δαλδβμ − δαμδβλ)δβλ = (1 − 3)δαμ = −2δαμ.

It follows, with the help of the identity given by (37), that the expression given by
(67) reduces all the way down to

(69)
l−1∑
k=0

(−nα
k )	s.

Combining this with the result for the first term, (66), we see that

(70)
∑
x∈gh

x× fb =
l−1∑
k=0

((Xk × (−fk)) + (−nk))	s.

Equations (64) and (70) show that our numerical algorithm does indeed apply
the correct total force and the correct total torque to the fluid. These equations
therefore imply that neither momentum nor angular momentum is spuriously created
or destroyed in the rod-fluid interaction step of our computational scheme.

Because (64) and (70) are identities that hold for any distribution of force and
torque applied by the rod to the fluid, and because the forces and torques are clearly
applied locally on account of the bounded support of δc, the significance of these
results is greater than it may at first appear. It is not merely a question of the total
force and torque being correct, but also that the force and torque applied by any
part of the rod are correctly transmitted to the fluid. This follows from the above by
decomposing the force and torque into parts (e.g., by using a partition of unity along
the rod), and then applying the above identities to each part separately.

5. Results and discussion. In this section, we study the evolution in time
of a twisted ring immersed in a viscous incompressible fluid. The ring starts out
in a configuration which is a perturbation of the circular equilibrium derived above
(section 2). Depending on the parameters, the perturbation may decay, in which case
the ring relaxes to the circular equilibrium configuration, or it may grow, in which case
the ring and the surrounding fluid undergo a large-amplitude motion that eventually
leads the ring into a stable coiled configuration in which self-contact of the ring plays
an important role.

The computational and physical parameters that we regard as standard are sum-
marized in Tables 1 and 2. Deviations from these values will be explicitly stated where
they occur. A particularly important parameter is the number of twists, p, which we
choose as an integer for reasons that have been discussed above. When other param-
eters are held fixed, the circular equilibrium of the ring is stable for sufficiently small
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Table 1

Computational parameters.

Computational domain (cubic) 10 cm × 10 cm × 10 cm
Fluid grid 64 × 64 × 64
Meshwidth for fluid, h 0.1562 cm

Fluid density, ρ 1g/cm3

Fluid viscosity, μ 0.01g/cm · s
Radius of the unstressed rod, r0 2.5 cm

Number of boundary points, nr 200

Meshwidth for rod, �s 0.0785 cm

Time step, �t 0.01 sec

Table 2

Material properties of the ring.

Bending modulus, a1 = a2 = a 0.3 dyne · cm2

Twist modulus, a3 0.2 dyne · cm2

Shear force constant, b1 = b2 = b 54 dyne
Stretch force constant, b3 = b 54 dyne
Number of twists, p 0, 1, 2, 3, 4, 5, 6

(a) t = 0s (b) t = 1.1s (c) t = 2.5s (d) t = 11s

Fig. 3. (a) Initial configuration with a ring (circle) and D1; (b)–(d) are snapshots at time t in
seconds. Parameters: an intrinsic twist p = 2, elastic material properties a = 0.3, a3 = 2

3
a, b = 54

in CGS (centimeter-gram-second) unit, and perturbation parameter ε = 10.

p and becomes unstable at some critical value of p. Also, in the unstable cases, the
coiled configuration that the ring eventually finds depends on the value of p.

With these chosen parameters, we find that when p = 0, 1, 2, the circular equilib-
rium of the twisted ring is stable. When p ≥ 3, the circular equilibrium is unstable,
and the ring evolves into different coiled shapes that depend on p. In fact, as p in-
creases, the number of loops in the final coiled configuration increases as well (see the
second column of snapshots in Figure 7). Computational experiments show that a
change in the value of the parameter b does not change the coiled equilibrium config-
urations for 1 < b ≤ 300.

Figure 3 shows motions at different instants when p = 2. The initial configuration
in this case is a strong perturbation away from the circular equilibrium, since ε = 10
(see (21)–(22)). Despite the large initial perturbation, we see that the ring relaxes
back to the circular equilibrium in this case. (Compare Figure 3(d) and Figure 1(a).)

The writhing dynamics that emerge in cases p = 4, 5, 7, in which the circular
equilibrium is unstable, are shown in Figures 4–6. In all three cases, we start very
close to the circular equilibrium configuration by setting ε = 0.001. Each figure shows
the ring and its associated triad in blue, and selected fluid markers that start out
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near the ring are shown in red. The fluid markers leave trails that show their recent
trajectories. At each selected time, two different views of the ring and fluid markers
are shown. The selected times are not equally spaced. Note in particular the long
time that it takes the perturbation to grow to a significant size in comparison to the
rapid evolution that happens thereafter. This is especially pronounced at the lower
unstable values of p. Throughout the complicated motions shown in these figures, the
ring retains its initial length to within 2%.

In Figure 4, the ring gradually takes on the configuration of a figure-eight structure
(see frame (d)), and then the two loops of the figure-eight twist in opposite directions.
The resulting coiled equilibrium is called a plectoneme [6, 13]. Note that the number
of self-contact points increases with time as the ring approaches its coiled equilibrium.

Figure 5 shows the case in which the intrinsic twist is p = 5. The equilibrium
configuration in Figure 5(e) has three points of self-contact and three loops. Figure 6
with p = 7 shows an equilibrium clover configuration with four self-contact points.

In Figure 7, we vary the twist modulus in order to see what impact that has on
the stability of the ring. The figure shows an array of results after the motion has
settled down. Each row corresponds to a particular value of the intrinsic twist p, and
each column corresponds to a particular value of the twist modulus (reported in terms
of the ratio of the twist modulus to the bend modulus, a3/a). It is readily apparent
from the figure that the stability boundary of the circular equilibrium configuration
moves in the direction of lower intrinsic twist as the twist modulus increases. Another
result of this study is that the number of loops formed during coiling increases both
as a function of the intrinsic twist and also as a function of the twist modulus.

Note that the first and last columns of Figure 7 consider cases that cannot be
achieved if the circular ring is made out of a homogeneous, isotropic elastic material
with the whole cross section filled. We include these cases because the anisotropic
microstructures that occur in biological settings make possible a wider range of ratios
of the twist to the bend modulus.

When the circular equilibrium configuration is unstable, the coiled configuration
that is eventually reached may depend on the initial condition. To study this, we
compare results computed with all parameters held fixed other than ε, which measures
the amplitude of the initial perturbation. Qualitatively different configurations of the
ring appear, each associated with an interval of values of ε, as shown in Figure 8,
which depicts a typical configuration for each such interval. In order of increasing
ε, the configurations seen may be described as follows: (a) a three-leaf clover, (b) a
configuration with two self-contact points, (c) a configuration with two well-separated
sets of closely spaced contact points, and (d) a plectoneme. According to [6], the clover
and plectoneme configurations are stable, but the others are not. This suggests that
further evolution would have been seen in the two intermediate cases if we had waited
long enough for it to occur.

In many of the above examples, the ring comes to rest in a configuration that
involves self-contact. We emphasize that this occurs without any special mechanism
for detecting or responding to a self-contact condition. Even though further reduc-
tion of the elastic potential energy would result from the ring moving through itself
in these situations, it does not do so. In real life, self-crossing is prevented by the
impenetrability of matter, or, as we sometimes say, by the reluctance of two things
to be in the same place at the same time. This could be modeled by a high potential
energy barrier. In the IB method, however, a different, more automatic, mechanism
achieves the same end. Recall that, in the IB method, the immersed boundary moves
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(a) a3 = 1
3a (b) a3 = 2

3a (c) a3 = 3
3a (d) a3 = 3

2a

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

p = 7

Fig. 7. Collection of stable equilibria depending on ratio of a3
a

and the initial twist p. Param-
eters: a = 0.3, b = 54 in CGS unit and ε = 0.001.
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(a) 0 < ε ≤ 0.175 (b) 0.2 ≤ ε ≤ 0.275 (c) 0.3 ≤ ε ≤ 0.35 (d) ε ≥ 0.375

Fig. 8. Transition of configurations with the increments in perturbation parameter ε. All other
parameters are fixed: a = 0.3, a3 = 2

3
a, b = 54, and p = 5.

in the continuous velocity field of the fluid. Therefore, at the level of the continuous
formulation of the problem, self-crossing is impossible. Even after discretization, the
IB points that represent the ring move in a continuous velocity field (with continuous
first spatial derivatives) that is obtained by interpolation from the fluid grid. Never-
theless, self-crossing of the ring in the discrete case is possible, for two reasons: the
continuous ring has been replaced by a discrete array of points, and the motion oc-
curs in discrete time steps instead of continuously. In practice, though, when the time
step is small enough, and when the spacing between the IB points is small enough in
relation to the resolution of the fluid grid, self-crossing does not occur.

It is both amusing and instructive to see what happens when the numerical pa-
rameters are not well chosen, and self-crossing does occur (see Figure 9). First the
immersed ring seems to settle into a coiled configuration with self-contact, like those
shown above. It takes some time for self-crossing to occur, since the velocities of two
IB points that are nearly in contact are nearly equal. Once self-crossing does occur, it
reduces the number of twists in the ring, and this may change the stability of the cir-
cular equilibrium configuration from unstable to stable. In such a case, the ring that
has crossed itself relaxes back to the circular configuration from which (except for a
small perturbation) it started, although the final configuration is not really the same
as the initial condition because of the reduction in the intrinsic twist that occurred
during the topological transition in which the ring crossed itself.

In order to determine the empirical order of accuracy of the method, we compare
numerical solutions obtained on four different meshes at a given time. As we refine
the computational mesh of the fluid grid, we follow the unusual procedure of keeping
the physical size of the support of the delta function constant. When we change from
a 643 grid to a 1283 grid, this implies that the numerical support of the delta function
grows from 43 to 83 points. In physical variables, we use the same delta function in
both cases; in units of meshwidths the delta function for the refined mesh is obtained
from the one for the coarse mesh by a simple scaling by a factor of two in each space
direction. The rationale for this procedure is that the diameter of the support of
the delta function is a physical rather than a numerical parameter in this work; it
corresponds at least roughly to the diameter of the rod, since it determines the size
of the region of fluid with which any given point of the rod interacts directly, and
therefore it should not be refined as the fluid grid is refined. (Recall that we represent
the rod by an immersed space curve, together with an associated orthonormal triad at
each point of that space curve. Such a curve, obviously, occupies zero volume, unlike
the physical rod that we are trying to represent. There is, however, a nonzero volume
of fluid within the support of the delta function, and this part of the fluid is the part
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(a) t = 0s (b) t = 102s (c) t = 118s (d) t = 136s

(e) t = 138s (f) t = 142s (g) t = 146s (h) t = 158s

Fig. 9. Self-crossing. The number of boundary points in this simulation is nr = 100, which is
too few to prevent self-crossing of the ring. Parameters: a = 0.3, a3 = a, b = 54, ε = 0.1, �t =
0.01s, p = 2. Self-crossing occurs between frames (c) and (d). Note that the twist is reduced by this
topological change. Close inspection of the triads in frame (h) shows that the twist has dropped to
p = 0.

that directly feels the force and torque generated by the rod, and also the part that
directly determines the velocity with which the rod moves and the angular velocity
with which its triads rotate. For these reasons, the volume of fluid within the support
of the delta function in our IB formulation may be said to model the rod itself.)

To test the convergence of the method, we performed calculations for the same
physical problem on four different grids, of sizes 323, 643, 1283, and 2563. The physical
parameters of the problem were as follows: a = 0.3, a3 = 0.3, b = 54, p = 3,
and ε = 0.1. This is a case in which the circular configuration is unstable, so the
ring undergoes a large deformation from a near-circular configuration to a coiled
configuration, and we first checked that the final coiled configuration was essentially
the same in all four cases. Then, to assess convergence quantitatively, we compared the
computed velocity fields at a particular time (t = 40s), which was chosen because that
is the time at which the ring has evolved roughly halfway to its final configuration. In
particular, this means that significant motion is still underway, so comparison of the
velocity fields computed on different grids at this time is meaningful. The numerical
parameters of the test are shown in Table 3. Note that the number of points nr on
the ring doubles, and also that the time step 	t is halved, for each refinement of the
meshwidth by a factor of two. Solutions computed on different grids are compared by
evaluating the discrete L2-norm of their difference (on those points that are common to
the grids in question). Convergence ratios of these L2-norm differences are displayed
in Table 4. All of these ratios are close to 2, which indicates first order convergence.

6. Conclusion. In this paper, we have generalized the IB method so that it
can be used to model an immersed elastic rod with bend and twist in a viscous
incompressible fluid. In the original IB method, the immersed boundary interacts
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Table 3

Parameter values for convergence study.

Grid size nr �t δc

32 × 32 × 32 100 0.01s 2-point
64 × 64 × 64 200 0.005s 4-point
128 × 128 × 128 400 0.0025s 8-point
256 × 256 × 256 800 0.00125s 16-point

Table 4

Convergence ratios for velocity u = (u, v, w) in L2-norm.

m ||um−u2m||2
||u2m−u4m||2

||vm−v2m||2
||v2m−v4m||2

||wm−w2m||2
||w2m−w4m||2

32 2.2210 1.8568 2.0194

64 1.9599 1.9991 2.0937

with the fluid by moving at the local fluid velocity and applying force locally to the
fluid. Here, the immersed boundary has an orientation as well as a position, the
orientation being described by an orthonormal triad attached to each IB point. The
new feature of the IB method described in this paper is that the interaction of the
immersed boundary with the fluid now involves not only translation of the IB points
at the local fluid velocity, but also rotation of the associated triads at the local fluid
angular velocity. Similarly, we apply not only force but also torque to the fluid in
which the bent twisted rod is immersed.

A key ingredient in the above scheme is a model of the bent twisted rod itself
in which the triads that define the local orientation of the material are not strictly
constrained to be aligned with the local tangent direction to the centerline of the rod.
Instead, strong elastic forces are provided which tend to maintain such alignment
without rigidly enforcing it. Similarly, we do not assume that arclength of a material
segment of the rod is exactly constant, but we do provide strong elastic forces that
oppose changes in the arclength of any material segment of the rod. Thus, our rod
model generalizes that of Kirchhoff by replacing the constraints of the Kirchhoff rod
model by penalty terms in the elastic energy that produce forces that tend to enforce
those constraints. The formulation of this generalized Kirchhoff rod model is described
in the appendix.

As an example application, we consider the motion in a viscous incompressible
fluid of a bent twisted rod whose centerline takes the form of a closed space curve.
As is well known, such a ring has an equilibrium configuration in which its centerline
is a circle, with a uniform distribution of twist. Such an equilibrium may be stable or
unstable. With all other parameters held constant, the equilibrium is stable for suffi-
ciently small twist and becomes unstable when a critical value of the twist is reached.
We have reproduced this phenomenology in the present paper, and, moreover, we
have used the new IB method to study what happens to the ring and the surrounding
fluid in the unstable case. Here, we observe various forms of supercoiling, in which
the ring eventually comes to rest in a configuration that involves self-contact.

A particular strength of the IB method proposed here, and indeed of IB methods
in general, is that the contact problem is solved in a completely effortless way. There
is no need to test for contact or to do anything special about it. The fundamental
reason for this is that the points that represent the immersed boundary move in
an interpolated velocity field that is continuous (and, moreover, has continuous first
derivatives) by construction. Thus, if we consider the idealized situation of an IB
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method in which only the fluid grid is discretized, but the immersed boundary itself
remains continuous, and in which time also remains continuous, then it is easy to see
that two different immersed boundaries, or two parts of the same immersed boundary,
cannot possibly cross, merely by continuity. In practice, of course, the immersed
boundary is discretized and time proceeds in discrete steps, but if we take care to
keep these two discretizations fine enough in relation to that of the fluid grid, then
the contact problem is automatically solved. We see many instances of this in the
supercoiling results of this paper, in which the bent twisted rod comes (nearly) to rest
in configurations of (very near) self-contact. Indeed, it is striking in our computed
results how closely the immersed boundary approaches itself without self-crossing.

We believe that the methods of this paper will find numerous applications in
biological fluid dynamics. As an example, consider bacteria that swim by spinning
long, thin, helical flagella. Such flagella are far from rigid. Indeed, when they all spin
the same way they tend to wrap around each other, forming a “superflagellum” that
propels the bacterium systematically in one direction [2]. Nevertheless, their elastic
resistance to bend and twist is essential to their maintenance of a helical configura-
tion, which in turn is essential for the development of thrust. With the original IB
method, it was possible to model bacterial flagella only as three-dimensional struc-
tures immersed in fluid [20]. The methods of the present paper make it possible to
model bacterial flagella in a one-dimensional manner: as immersed space curves with
a triad (material frame) at each point. The extreme thinness of bacterial flagella in
relation to their length suggests that this is their more natural representation.

Appendix. The unconstrained Kirchhoff rod model. We sketch here the
derivation of the equilibrium equations of the unconstrained Kirchhoff rod model that
is used in this paper. The state of the rod is described by a space curve X(s) and
an associated orthonormal triad at each s, {D1(s),D2(s),D3(s)}, 0 ≤ s ≤ L, where
L is the unstressed length of the rod. We assume that the rod is closed on itself,
forming a loop, and that X(s),D1(s),D2(s),D3(s) are all smoothly periodic with
period L. The rod is subject to applied forces and couples denoted f(s)ds and n(s)ds,
respectively. The internal forces and couples transmitted across a section of the rod
at s are denoted F(s) and N(s), respectively, with the sign convention that these are
the forces and couples applied by the part of the rod with s′ > s near s to the part
of the rod with s′ < s near s across the section of the rod at s.

Because {D1(s),D2(s),D3(s)} is an orthonormal triad, we have the constraints

(71) Di(s) · Dj(s) = δij

which we impose exactly. The sense in which our Kirchhoff rod model is unconstrained
is that we do not require D3 to be aligned with the tangent vector to the axis of the
rod ∂X/∂s, nor do we assume that |∂X/∂s| = 1. Instead, we provide an energy
penalty for deviations from these conditions, so that they tend to be maintained
approximately instead of exactly. One advantage of this penalty approach is that we
thereby obtain an explicit formula for the force F(s) that is transmitted across each
section of the rod in terms of the configuration of the rod and its triad. Another
advantage of the penalty formulation is that we thereby avoid imposing complicated
constraints on the fluid motion in the neighborhood of the rod.

Because the transport of the triad along the rod is that of a rigid body, there
must be a vector field K(s) such that

(72)
∂Di

∂s
= K × Di.
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The components of K in the basis {D1,D2,D3} are known as the curvatures of the
rod, and a fundamental assumption of Kirchhoff rod theory is that

(73) Nk(s) = akKk(s)

for k = 1, 2, 3, where the Nk are the components of N in the basis {D1,D2,D3}.
We assume here that the rod is homogeneous, so that the ak do not depend on s,
and, moreover, we assume that the triad has been set up in the relaxed configuration
of the rod in such a way that D1 and D2 are perpendicular to the axis of the rod
and aligned with the principal axes of the cross section. The constants a1 and a2 are
called bending moduli, and the constant a3 is the twisting modulus of the rod.

The equations of equilibrium can be derived in two ways, and comparison of the
two results is very instructive. The first method is to consider force and torque balance
for an arbitrary interval of the rod, say (s1, s2). These considerations give

0 =
∫ s2

s1

f(s)ds+ F(s)|s2
s1
,(74)

0 =
∫ s2

s1

(n(s) + (X(s) × f(s))) ds+ (N(s) + (X(s) × F(s)))|s2
s1
.(75)

In (74), we use the fundamental theorem of calculus to combine the two terms:

(76) 0 =
∫ s2

s1

(
f +

∂F
∂s

)
ds.

Then, since s1 and s2 are arbitrary,

(77) 0 = f +
∂F
∂s
.

Equation (75) can be manipulated in a similar way, and the result can be simplified
with the help of (77). When this is done, we get

(78) 0 = n +
∂N
∂s

+
(
∂X
∂s

× F
)
.

Equations (77)–(78) are the equilibrium equations in vector form. They implicitly
involve the triad configuration {D1(s),D2(s),D3(s)} through (72) and (73).

In the standard Kirchhoff rod theory, these equations are supplemented by the
constraint ∂X/∂s = D3, which states that D3 is tangent to the axis of the rod, and,
moreover, since D3 is a unit vector, that s = arclength. We avoid this constraint here
and use a penalty formulation instead. This brings us to the second derivation of the
equilibrium equations.

We assume that the elastic energy of the rod is given by

(79) E =
1
2

∫ L

0

3∑
i=1

(
aiK

2
i + bi

(
∂X
∂s

· Di − δ3i

)2
)
ds,

where the ai have the same meaning as before, and where the new parameters bi are
the penalty constants. The parameters b1 and b2 may be interpreted as shear moduli,
and b3 is an extension modulus. The theory we derive here reduces to the standard
theory as bi → ∞ for i = 1, 2, 3.
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We may eliminate the Ki from (79) by solving (72) for Ki. To do this, let (i, j, k)
be any cyclic permutation of (1, 2, 3), and write (72) in terms of j instead of i:

(80)
∂Dj

∂s
= K × Dj .

Then take the dot product of both sides with Dk:

(81)
∂Dj

∂s
·Dk =

(
K× Dj

) · Dk = K · (Dj × Dk
)

= K · Di = Ki.

Thus, the elastic energy may be expressed entirely in terms of X(s),D1(s),D2(s),D3(s),
as follows:

(82) E =
1
2

∫ L

0

3∑
i=1

(
ai

(
∂Dj

∂s
·Dk

)2

+ bi

(
∂X
∂s

·Di − δ3i

)2
)
ds.

Here, and throughout this appendix, (i, j, k) always denotes a cyclic permutation of
(1, 2, 3).

To find the equations of equilibrium of the rod under applied forces and couples,
we invoke the principle of virtual work. The work done on the rod, to first order, by the
applied forces f(s)ds and by the applied couples n(s)ds, during a virtual displacement
X → X + δX and a virtual rotation of the triad Di → Di + δDi, where

(83) δDi = δΩ × Di,

is given by

(84) δW =
∫ L

0

(f · δX + n · δΩ) ds.

As we did previously with K, we can find the components of δΩ in the basis
{D1,D2,D3} from (83). The result is

(85) δDj · Dk = δΩi.

Thus (84) may be rewritten as follows:

(86) δW =
∫ L

0

(
f · δX +

3∑
i=1

niδDj · Dk

)
ds.

We are now ready to apply the principle of virtual work, with Lagrange multipliers
to enforce the constraints Di · Dj = δij . We note that these constraints are of two
types (i �= j and i = j), with three of each type. Accordingly, we introduce the
constraint function

(87) Ec =
∫ L

0

3∑
i=1

(
qiDj · Dk + ri

(
Di ·Di − 1

))
ds,

where qi(s) and ri(s) are the six Lagrange multiplier functions. Note that Ec = 0 for
arbitrary qi(s) and ri(s) if and only if the constraints Di · Dj = δij are satisfied.
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The principle of virtual work with Lagrange multipliers now takes the following
form:

(88) δW = δE + δEc

for arbitrary δX(s), δD1(s), δD2(s), δD3(s) that are smoothly periodic. We leave it as
a (lengthy!) exercise for the reader to show, after eliminating the Lagrange multipliers,
that the principle of virtual work implies the following two equations of equilibrium:

0 = f +
∂F
∂s
,(89)

0 = ni + ai
∂Ki

∂s
+ (ak − aj)KjKk + (FkDj − FjDk) · ∂X

∂s
,(90)

where we have made the definitions

Fi = bi

(
∂X
∂s

· Di − δ3i

)
,(91)

F =
3∑

i=1

FiDi.(92)

Equation (89) already agrees with the first of our equilibrium equations (77), but
now we have an explicit formula for F, (91)–(92), which we did not have before. This
is the main benefit of the penalty formulation.

It remains only to compare (90) with the second equilibrium equation, (78). To
do so, we note the following identities, which may be verified by the reader:

ai
∂Ki

∂s
+ (ak − aj)KjKk =

∂N
∂s

·Di,(93)

∂X
∂s

· (FkDj − FjDk
)

=
(
∂X
∂s

× F
)
·Di.(94)

Thus, (90) is the i component of the vector equation

(95) 0 = n +
∂N
∂s

+
(
∂X
∂s

× F
)
,

which agrees perfectly with the second equilibrium equation, (78).
Thus, we have reached the possibly surprising conclusion that the vector form of

the equations of equilibrium of our unconstrained Kirchhoff rod model are exactly the
same as the vector equations of equilibrium of the standard Kirchhoff rod, with the
only difference being that in the unconstrained case we get an explicit formula for F
to replace the missing constraint equation ∂X/∂s = D3.

It should be noted, however, that the two sets of equations are not exactly the
same when resolved into components in the basis {D1,D2,D3}. This is because
that basis is itself slightly rotated in the unconstrained case in comparison to its
configuration in the constrained case. It turns out that the first equilibrium equation
is exactly the same in the two cases despite this rotation. To see what happens to the
second equilibrium equation, though, we note that (91) can be rewritten as

(96)
∂X
∂s

· Di = δ3i +
Fi

bi
,
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and that this allows us to rewrite (90) as follows:

(97) 0 = ni + ai
∂Ki

∂s
+ (ak − aj)KjKk + (Fkδ3j − Fjδ3k) + FjFk

(
1
bj

− 1
bk

)

for i = 1, 2, 3, with (i, j, k) a cyclic permutation of (1, 2, 3) in each case. Since the
standard Kirchhoff rod model is obtained from our unconstrained rod model by letting
all of the bi → ∞, we see that (97) differs from the corresponding equation in the
standard case only by virtue of the last term, and, moreover, we see that this term can
be made to vanish, not only by letting all of the bi approach infinity, but alternatively
by setting all of the bi equal to each other, as we have done in the present work.

Acknowledgments. Our code for the simulation of the bent twisted rod im-
mersed in fluid is built upon IB software by Nathaniel Cowen, David McQueen, and
C. S. Peskin. We are indebted to David McQueen and Estarose Wolfson for the use of
their visualization software and also for their technical assistance. We thank Yongsam
Kim and David Swigon for useful discussions.

REFERENCES

[1] S. S. Antman, Nonlinear Problems of Elasticity, Springer-Verlag, New York, 1995.
[2] H. C. Berg, The rotary motor of bacterial flagella, Annu. Rev. Biochem., 72 (2003), pp. 19–54.
[3] T. C. Bishop, R. Cortez, and O. O. Zhmudsky, Investigation of bend and shear waves in a

geometrically exact elastic rod model, J. Comput. Phys., 193 (2004), pp. 642–665.
[4] B. D. Coleman and D. Swigon, Supercoiled configurations with self-contact in the theory of

the elastic rod model for DNA plasmids, J. Elasticity, 60 (2000), pp. 171–221.
[5] B. D. Coleman and D. Swigon, Theory of self-contact in Kirchhoff rods with applications to

supercoiling of knotted and unknotted DNA plasmids, Philos. Trans. R. Soc. Lond. Ser. A
Math. Phys. Eng. Sci., 362 (2004), pp. 1281–1299.

[6] B. D. Coleman, D. Swigon, and I. Tobias, Elastic stability of DNA configurations. II. Su-
percoiled plasmids with self-contact, Phys. Rev. E (3), 61 (2000), pp. 759-770.

[7] E. H. Dill, Kirchhoff’s theory of rods, Arch. Hist. Exact Sci., 44 (1992), pp. 2–23.
[8] R. Dillon, L. Fauci, and D. Gaver, III, A microscale model of bacterial swimming, chemo-

taxis and substrate transport, J. Theoret. Biol., 177 (1995), pp. 325–340.
[9] L. Fauci and C. S. Peskin, A computational model of aquatic animal locomotion, J. Comput.

Phys., 77 (1988), pp. 85–108.
[10] A. Ferent, C. S. Peskin, and X. Wang, Modeling a bent twisted filament immersed in fluid, in

Proceedings of the 7th U.S. National Congress on Computational Mechanics, Albuquerque,
NM, 2003.

[11] A. L. Fogelson, A mathematical model and numerical method for studying platelet adhesion
and aggregation during blood clotting, J. Comput. Phys., 56 (1984), pp 111–134.

[12] E. Givelberg, Modelling elastic shells immersed in fluid, Comm. Pure Appl. Math., 57 (2004),
pp. 283–309.

[13] R. E. Goldstein, T. R. Powers, and C. H. Wiggins, Viscous nonlinear dynamics of twist
and writhe, Phys. Rev. Lett., 80 (1998), pp. 5232–5235.

[14] A. Goriely and M. Tabor, Nonlinear dynamics of filaments I. Dynamical instabilities,
Phys. D, 105 (1997), pp. 20–44.

[15] A. Goriely and M. Tabor, Nonlinear dynamics of filaments II. Nonlinear analysis, Phys. D,
105 (1997), pp. 45–61.

[16] A. Goriely and M. Tabor, The nonlinear dynamics of filaments, Nonlinear Dynam., 21
(2000), pp. 101–133.

[17] K. A. Hoffman, R. S. Manning, and J. H. Maddocks, Link, twist, energy, and the stability
of DNA minicircles, Biopolymers, 70 (2003), pp. 145–157.

[18] E. Jung and C. S. Peskin, Two-dimensional simulations of valveless pumping using the im-
mersed boundary method, SIAM J. Sci. Comput., 23 (2001), pp. 19–45.

[19] I. Klapper, Biological applications of the dynamics of twisted elastic rods, J. Comput. Phys.,
125 (1996), pp. 325–337.

[20] S. Lim and C. S. Peskin, Simulations of the whirling instability by the immersed boundary
method, SIAM J. Sci. Comput., 25 (2004), pp. 2066–2083.

D
ow

nl
oa

de
d 

03
/2

4/
19

 to
 1

28
.1

22
.1

49
.9

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

302 S. LIM, A. FERENT, X. S. WANG, AND C. S. PESKIN

[21] A. E. Love, A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press,
Cambridge, UK, 1892.

[22] N. H. Mendelson, Helical growth of Bacillus subtilis: A new model of cell growth, Proc. Natl.
Acad. Sci. USA, 73 (1976), pp. 1740–1744.

[23] N. H. Mendelson, Bacterial growth and division: Genes, structures, forces and clocks, Micro-
biol. Rev., 46 (1982), pp. 341–375.

[24] N. H. Mendelson, J. J. Thwaites, J. O. Kessler, and C. Li, Mechanics of bacterial
macrofiber initiation, J. Bacteriol., 177 (1995), pp. 7060–7069.

[25] C. S. Peskin, Flow patterns around heart valves: A numerical method, J. Comput. Phys., 10
(1972), pp. 252–271.

[26] C. S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25 (1977),
pp. 220–252.

[27] C. S. Peskin, The immersed boundary method, Acta Numer., 11 (2002), pp. 479–517.
[28] C. S. Peskin and D. M. McQueen, Fluid dynamics of the heart and its valves, in Case Studies

in Mathematical Modeling: Ecology, Physiology, and Cell Biology, H. G. Othmer, F. R.
Adler, M. A. Lewis, and J. C. Dallon, eds., Prentice–Hall, Englewood Cliffs, NJ, 1996,
pp. 309–337.

[29] T. Schlick, Modeling superhelical DNA: Recent analytical and dynamic approaches, Curr.
Opin. Struct. Biol., 5 (1995), pp. 245–262.

[30] T. Schlick and W. K. Olson, Trefoil knotting revealed by molecular dynamics simulations of
supercoiled DNA, Science, 257 (1992), pp. 1110–1115.

[31] T. R. Strick, J. F. Allemand, D. Bensimon, and V. Croquette, Behavior of supercoiled
DNA, Biophys. J., 74 (1998), pp. 2016–2028.

[32] C. W. Wolgemuth, R. E. Goldstein, and T. R. Powers, Dynamic supercoiling bifurcations
of growing elastic filaments, Phys. D, 190 (2004), pp. 266–289.

[33] Y. Yang, I. Tobias, and W. K. Olson, Finite element analysis of DNA supercoiling, J. Chem.
Phys., 98 (1993), pp. 1673–1686.

[34] L. Zhu and C. S. Peskin, Simulation of a flapping flexible filament in a flowing soap film by
the immersed boundary method, J. Comput. Phys., 179 (2002), pp. 452–468.

D
ow

nl
oa

de
d 

03
/2

4/
19

 to
 1

28
.1

22
.1

49
.9

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


