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COARSE-GRAINED IMPLICIT-SOLVENT SIMULATIONS IN
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Abstract. We introduce a software package integrated with the molecular dynamics software
LAMMPS for fluctuating hydrodynamics simulations of fluid-structure interactions subject to ther-
mal fluctuations. The package is motivated to provide dynamic thermostats to extend implicit-solvent
coarse-grained (IS-CG) models by incorporating kinetic contributions from the solvent to facilitate
their use in a wider range of applications. To capture the thermal and hydrodynamic contributions of
the solvent to dynamics, we introduce momentum conserving thermostats and computational meth-
ods based on fluctuating hydrodynamics and the stochastic Eulerian Lagrangian method (SELM).
SELM couples the coarse-grained microstructure degrees of freedom to continuum stochastic fields to
capture both the relaxation of hydrodynamic modes and thermal fluctuations. Features of the SELM
software include (i) numerical time-step integrators for SELM fluctuating hydrodynamics in inertial
and quasi-steady regimes, (ii) Lees–Edwards-style methods for imposing shear, (iii) a Java-based
graphical user interface (GUI) for setting up models and simulations, (iv) standardized XML for-
mats for parametrization and data output, and (v) standardized formats VTK for continuum fields
and microstructures. The SELM software package facilitates for pre-established models in LAMMPS
easy adoption of the SELM fluctuating hydrodynamics thermostats. We provide here an overview of
the SELM software package, computational methods, and applications.

Key words. fluctuating hydrodynamics, implicit solvent, coarse-grained, stochastic Eulerian
Lagrangian method, immersed boundary method, soft materials
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1. Introduction. We introduce a computational package for fluctuating hydro-
dynamics thermostats for dynamic simulations of implicit-solvent coarse-grained (IS-
CG) models. IS-CG models have been developed to study phenomena relevant to
soft materials and biophysics on length and time scales difficult to attain with fully
atomistic molecular dynamics. IS-CG models explicitly model microstructures at a
coarse-grained level and remove the solvent degrees of freedom to treat instead the
solvent contributions implicitly in the effective free energy of interaction between the
microstructures. Gains in computational efficiency are achieved through (i) a reduc-
tion in the number of degrees of freedom as a consequence of the removed solvent and
coarse-graining of the microstructure and (ii) reducing the roughness and complexity
of the energy landscape that results in less stiff mechanics and more rapid equilibra-
tion. The IS-CG approach has worked well to reveal insights into diverse phenomena
relevant to soft materials and biophysics [12, 14, 16, 19, 23, 30, 38, 41].

IS-CG models have primarily been motivated by and used for studying equilibrium
properties of soft materials using Monte Carlo sampling or Langevin dynamics. For
kinetic studies, IS-CG models simulated with Langevin dynamics neglect important
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FLUCTUATING HYDRODYNAMIC SIMULATIONS IN LAMMPS S63

contributions in the kinetics arising from the missing solvent degrees of freedom.
The solvent contributes not only to the free energy of interaction but also to the
kinetics by mediating lateral momentum transport as manifested in hydrodynamics.
The Langevin thermostat uses local sources and sinks of momentum that suppress
such lateral correlations between microstructures [44]. To capture consistently at
the level of hydrodynamics the momentum transport and thermal fluctuations, we
introduce a momentum conserving thermostat based on fluctuating hydrodynamics
referred to as the stochastic Eulerian Lagrangian method (SELM) [7]. In SELM, we
introduce continuum stochastic fields that are coupled to the implicit-solvent models
to thermostat the system in a manner which conserves momentum [7].

2. Stochastic Eulerian Lagrangian method (SELM). SELM provides a
framework for modeling fluid-structure interactions subject to thermal fluctuations.
To obtain a tractable description, approximate operators modeling the fluid-structure
interaction can be used as in the immersed boundary (IB) method [34]. A Lagrangian
description of the microstructure, typically a collection of markers in the fluid, is
coupled to an Eulerian mesh for the hydrodynamics; see Figure 1. The thermal
fluctuations are accounted for by stochastic driving fields introduced in a manner
consistent with the approximation and statistical mechanics [7]. This facilitates the
development of efficient stochastic numerical methods building upon deterministic
computational fluid dynamics solvers. Microstructures can include point particles,
slender filaments, or solid bodies [7, 13, 34].

(a) (b)

Fig. 1. SELM. (a) Coupling of a Lagrangian body with the Eulerian discretization mesh. (b)
Can represent extended bodies, filaments, or point particles.

2.1. Inertial regime. In the inertial description of the fluid-structure system,
we model the microstructure dynamics similar to Langevin by

dX

dt
= v,(1)

m
dv

dt
= −Υ(v − Γu)−∇XΦ[X] + Fthm.(2)

A key difference with Langevin is that we reference the drag force relative to the
solvent hydrodynamic field u. The contributions of the solvent fluid are modeled by
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S64 Y. WANG, J. K. SIGURDSSON, AND P. J. ATZBERGER

the incompressible fluctuating hydrodynamics

ρ
∂u

∂t
= µ∆u−∇p+ Λ[Υ(v − Γu)] + fthm,(3)

∇ · u = 0.(4)

In the notation, X denotes the collective degrees of freedom of the microstructures,
v the microstructure velocity, and m the microstructure excess mass [7, 42]. The
fluid velocity is denoted by u, the fluid density by ρ, and the dynamic viscosity by µ.
The pressure acts as a Lagrange multiplier to enforce the incompressibility constraint
given in (4). The Υ denotes the coefficient of microstructure drag with respect to the
fluid and Φ the potential energy associated with the microstructure configuration X.

Thermal fluctuations are taken into account by Gaussian stochastic driving fields
Fthm and fthm with mean zero and moments

〈fthm(s)fTthm(t)〉 = − (2kBT ) (L − ΛΥΓ) δ(t− s),(5)

〈Fthm(s)FT
thm(t)〉 = (2kBT ) Υδ(t− s),

〈fthm(s)FT
thm(t)〉 = − (2kBT ) ΛΥδ(t− s).

We denote L = µ∆u. The stochastic equations are to be given the Ito interpretation
throughout [22, 31]. This particular spatial covariance was derived for SELM using
the fluctuation-dissipation principle of statistical mechanics [7, 37].

The operators Γ and Λ model the fluid-structure interactions through the equal
and opposite dissipative terms −Υ(v− Γu) acting as a drag force on the microstruc-
tures and ΛΥ(v − Γu) acting as a drag force density on the fluid [7, 42]. To achieve
desirable properties in the mechanics and numerics we require the coupling operators
to be adjoints throughout [7, 34, 42]. The fluid-structure interactions and particular
choice of Γ, Λ contribute important correlations in the thermal fluctuations; see (5).

Many types of operators can be used to couple the microstructure and fluid de-
pending on the problem [7]. For simplicity, we take the widely used immersed bound-
ary (IB) method [34] which is based on a kernel function to perform averages using
markers in the fluid to obtain a reference velocity and to perform force spreading (see
Figure 1):

Γu =

∫
Ω

η (y −X(t)) u(y, t)dy,(6)

ΛF = η (x−X(t)) F.(7)

The kernel functions η(z) are chosen to be the Peskin δ-function, which has a number
of important properties, such as near-translational invariance over the mesh, which is
useful in numerical methods [5, 34].

2.2. Quasi-steady regime. A central challenge in the development of viable
numerical methods for (1)–(4) is the significant temporal stiffness that arises from the
stochastic driving fields that excite diverse scales in the fluid-structure system [7]. This
has been handled through the development of stiff numerical time-step integrators [5]
and, alternatively, through the development of stochastic asymptotics that exploit
a separation of time-scales to obtain reduced stochastic equations having less stiff
dynamics [7, 42].

In problems where the overall hydrodynamic coupling is important but not the
relaxation dynamics of the hydrodynamic modes, the SELM equations can be reduced
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FLUCTUATING HYDRODYNAMIC SIMULATIONS IN LAMMPS S65

to [7, 42]

dX

dt
= HSELM[−∇XΦ(X)](8)

+ (∇X ·HSELM)kBT + hthm,

HSELM = Γ(−℘L)−1Λ,(9)

〈hthm(s)hT
thm(t)〉 = (2kBT )HSELM δ(t− s).(10)

L = µ∆, and ℘ denotes a projection operator that imposes the incompressibility
constraint in (4) [13, 42].

This provides a mesh-based approach to computing the quasi-steady hydrody-
namic coupling in a manner especially useful for complex geometries or when impos-
ing special boundary conditions [8, 36]. This formulation of SELM treats a physical
regime similar to Brownian–Stokesian dynamics simulations [4, 11, 18]. For a more
detailed discussion and SELM methods for other physical regimes, see [5, 7, 42].

2.3. Computational methods. In the current SELM package release, we con-
sider numerical methods and implementations for the two extremal regimes: (i) fully
inertial dynamics of the microstructure and hydrodynamics, and (ii) overdamped
dynamics of the microstructure subject to quasi-steady hydrodynamics. For SELM
methods for other physical regimes and more details, see [7, 42].

A central challenge in developing viable computational methods for the fluctuat-
ing hydrodynamic equations (1)–(4) is that solutions u are highly irregular in space
and time. Technically, the fields are solutions of the stochastic partial differential
equations only in a weak generalized sense described by distributions [29, 39]. This
requires special consideration in the development of discretizations and in the approx-
imation of the stochastic driving fields [5, 7].

2.3.1. Spatial discretization. Many different approaches can be used to discre-
tize SELM, including spectral methods, finite differences, and finite elements [5, 7, 36].
For simplicity, we discuss here the case of finite difference methods on a uniform pe-
riodic mesh. We approximate the Laplacian ∆u ∼ Lu where

[Lu]m =

3∑
j=1

um+ej
− 2um + um−ej

∆x2
.(11)

We approximate the fluid incompressibility constraint ∇ · u = 0 by the divergence
operator ∇ · u ∼ D · u where

[D · u]m =

3∑
j=1

uj
m+ej

− uj
m−ej

2∆x
.(12)

m = (m1,m2,m3) denotes the index of the lattice site. ej denotes the standard
basis vector in three dimensions. We spatially semidiscretize the SELM equations
by replacing the operators in (1)–(4) with the corresponding discrete operators. We
approximate the stochastic driving fields by replacing the continuum fields with a
Gaussian process on the lattice sites of the mesh with moments imposed by (5) cor-
responding to the discrete operators. This ensures the discretization approximates’
fluctuation-dissipation balance and can be shown to have other desirable properties.
For a more detailed discussion, see [5, 7].
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S66 Y. WANG, J. K. SIGURDSSON, AND P. J. ATZBERGER

2.3.2. Temporal discretization. For the SELM dynamics in (1)–(4), we de-
velop a temporal integrator that extends the Velocity-Verlet method used in molecular
dynamics [43]. The Velocity-Verlet method was originally developed for integrat-
ing deterministic time-reversible dynamics such as Newton’s equations of mechan-
ics to preserve symmetries to achieve advantageous stability and energy conserva-
tion [2, 21, 43]. In the stochastic setting, the time-reversible symmetry is broken by
the dissipative terms and the stochastic driving fields. However, despite this broken
symmetry, the scheme still offers some advantages over Euler–Marayuma [27]. For
the SELM equations (1)–(4), we use the Verlet-style integrator

vn+ 1
2 = vn +

∆t

2
m−1Fn(13)

+
∆t

2

(
−m−1Υ

(
vn− 1

2 − Γnun− 1
2

)
+ m−1gn− 1

2

)
,

un+ 1
2 = un +

∆t

2
ρ−1µLun− 1

2

− ∆t

2

(
ρ−1Λn

[
−Υ

(
vn− 1

2 − Γnun− 1
2

)
+gn− 1

2

])
+ hn− 1

2 ,

Xn+1 = Xn + vn+ 1
2 ∆t,

vn+1 = vn+ 1
2 +

∆t

2
m−1Fn+1

+
∆t

2

(
−m−1Υ

(
vn+ 1

2 − Γn+1un+ 1
2

)
+m−1gn+ 1

2

)
,

un+1 = un+ 1
2 +

∆t

2
ρ−1µLun+ 1

2

− ∆t

2

(
ρ−1Λn+1

[
−Υ

(
vn+ 1

2 − Γn+1un+ 1
2

)
+gn+ 1

2

])
+ hn+ 1

2 ,

where

〈gn− 1
2 gn− 1

2T 〉 = 4kBTΥ/∆t,(14)

〈hnhnT 〉 = 4kBTρ
−2µL/∆t.(15)

The Fn gives the forces for particle configuration Xn. The scheme extends the
Velocity-Verlet method to include the dissipative and stochastic terms by sampling
them at the half-time-steps in a staggered manner relative to the microstructure con-
figurations. The numerical integrator is momentum conserving even in the presence
of the dissipative and stochastic driving terms which can be shown to only transfer
momentum between the microstructure and hydrodynamic fields. This can be con-
trasted with the Langevin dynamics which uses local sources and sinks of momentum
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FLUCTUATING HYDRODYNAMIC SIMULATIONS IN LAMMPS S67

to thermostat. Finally, to temporally discretize the quasi-steady SELM dynamics in
(8)–(10), we use the Euler–Marayuma method [8, 27].

( a ) ( b ) ( c )

Fig. 2. Lees–Edwards boundary conditions. (a) “Sliding bricks” model for imposed shear;
(b) microstructure interactions with shifted periodic images; (c) deforming discretization mesh for
hydrodynamics.

2.4. Shear boundary conditions: Lees–Edwards for SELM. To model
imposed shear stress on a simulation domain, Lees and Edwards introduced methods
for molecular dynamics [28]. The central idea is to use a “sliding bricks model,” where
a periodic-like boundary condition is imposed on interactions near the boundary but
with a time-dependent shift of the periodic images. In addition, the velocities of
particles in the periodic images are accordingly adjusted; see Figure 2. We have de-
veloped a similar approach in the context of SELM by imposing in the hydrodynamic
equations the condition [8]

u(x, y, L, t) = u(x− vt, y, 0, t) + vex.(16)

This corresponds to a domain of size L with shear along the z-axis in the x-direction
at the shear rate γ̇ = v/L. However, in numerical discretizations on a Cartesian mesh
the shift x− vt is inconvenient and results in interpolation error from a mismatch of
lattice points [8]. To avoid this issue, the SELM fluctuating hydrodynamic equations
are reformulated and solved on a deforming mesh for the equivalent hydrodynamic
field w(q, t) = u(φ(q, t), t), where φ(q, t) = (q1 + q3γ̇t, q2, q3) and q = (q1, q2, q3)
parametrizes the unit cell. The jump in velocity at the boundary is handled by
introducing a localized source term in the SELM equations. This reformulation allows
for the field w to be treated numerically as periodic w(q1, q2, L, t) = w(q1, q2, 0, t).
This allows for efficient computational methods using FFTs [8].

An important feature of the Lees–Edwards-style approach is that shear is imposed
by modifying interactions only locally near the domain boundary. This is in contrast to
imposing a global affine transformation of the entire simulation domain as is sometimes
done in studies of polymeric networks [20, 40]. This local-global distinction can be
important since shear stresses can induce nonaffine deformations in systems [9, 25, 40].
The approach above allows for incorporating the Lees–Edwards-style conditions for
imposing shear into SELM fluctuating hydrodynamic simulations [8]. We give an
example simulation using these methods in section 5.2.

3. SELM software package for LAMMPS. To facilitate use by a wide com-
munity, we have integrated implementation of the SELM computational methods
with the LAMMPS molecular dynamics software [35]. The methods have been imple-
mented in C++. An overview of how the codes are used to set up models, interact
with LAMMPS, and produce simulation output is shown in Figure 3.

Models can be set up in a few different ways, including (i) custom commands in
the LAMMPS script, (ii) Python codes to generate input data and control SELM-
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S68 Y. WANG, J. K. SIGURDSSON, AND P. J. ATZBERGER

Fig. 3. Package interactions and data flow. SELM simulations can be set up with Python,
LAMMPS scripts, or the MANGO GUI. Standardized XML formats are used for input and output.

LAMMPS, or (iii) the MANGO graphical user interface (GUI). The main SELM mod-
ule interfaces with LAMMPS through a custom “fix class” referred to as USER-SELM
in the terminology of LAMMPS. These codes provide the hooks for the time-stepping
routines, force interactions, calculations of statistics, and data input/output. The
SELM module obtains model geometry and parameters through standard LAMMPS
data structures and by reading select parameter files having a standardized XML
format that closely follows the object classes of SELM.

LAMMPS1SELMuInterfaceu XMLuInterface
fix_SELMWcpp Atz_XML_Helper_ParseDataWcpp
fix_SELM_XML_HandlerWcpp Atz_XML_PackageWcpp
SELM_PackageWcpp Atz_XML_ParserWcpp
Atz_XML_Handler_Example_AWcpp Atz_XML_SAX_DataHandlerWcpp
Atz_XML_Helper_DataHandler_ListWcpp Atz_XML_SAX_Handler_MultilevelWcpp
Atz_XML_Helper_Handler_SkipNextTagWcpp Atz_XML_SAX_Handler_PrintToScreenWcpp
EulerianuMechanics LagrangianuMechanics
SELM_EulerianWh SELM_LagrangianWh
SELM_Eulerian_TypesWh SELM_Lagrangian_Delegator_XML_HandlerWh
SELM_Eulerian_Delegator_XML_HandlerWh SELM_Lagrangian_LAMMPS_ATOM_ANGLE_STYLEWh
SELM_Eulerian_LAMMPS_SHEAR_UNIFORMB_FFTW3Wh SELM_Lagrangian_LAMMPS_ATOM_ANGLE_STYLE_XML_HandlerWh
SELM_Eulerian_LAMMPS_SHEAR_UNIFORMB_FFTW3_XML_HandlerWh SELM_Lagrangian_TypesWh
SELM_Eulerian_UniformB_PeriodicWh SELM_PackageWh
SELM_Eulerian_UniformB_Periodic_XML_HandlerWh
Time1StepuIntegration Fluid1StructureuCoupling
SELM_IntegratorWh SELM_CouplingOperatorWh
SELM_Integrator_Delegator_XML_HandlerWh SELM_CouplingOperator_Delegator_XML_HandlerWh
SELM_Integrator_FFTW3_PeriodWh SELM_CouplingOperator_LAMMPS_SHEAR_UNIFORMB_FFTW3_TABLEBWh
SELM_Integrator_LAMMPS_SHEAR_QUASI_STEADYB_FFTW3Wh SELM_CouplingOperator_LAMMPS_SHEAR_UNIFORMB_FFTW3_TABLEB_XML_HandlerWh
SELM_Integrator_LAMMPS_SHEAR_QUASI_STEADYB_FFTW3_XML_HandlerWh

Fig. 4. Source codes in C ++ for the SELMs.

The C++ classes can be organized into roughly six categories (i) Eulerian me-
chanics, (ii) Lagrangian mechanics, (iii) coupling operators, (iv) force interactions,
(v) time-step integrators, and (vi) XML processors. We show a typical collection of
source files from our first release in Figure 4. The specific C++ classes and source
files for the current release can be found in the distribution package. The classes are
designed to operate with few interdependencies and interact through a standardized
programming interface. In addition, each of the classes receives parameter values
through a standardized XML interface.

The implementation has been designed for each of the general class categories
to be easily extended for the creation of new spatial-temporal numerical methods,
types of Eulerian–Lagrangian descriptions, and physical models. Each category has
a “delegator class” that is responsible for interpreting the class type from an iden-
tify string passed along from a script or XML data associated with a given physical
model [10, 17]. In practice, this is done easily by creating a new derived class imple-
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Fig. 5. The package USER-SELM and the SELM time-step integrator classes coordinate the
simulation. Shown are the broad categories of C ++ classes and the interactions between SELM and
LAMMPS.

menting the standardized interface and by updating the delegator class to include an
identifier string linked with this new class.

The primary LAMMPS-SELM interface is implemented in the class fix SELM.cpp.
The time-step integrator class coordinates primarily the software components shown in
Figure 5. In a typical simulation of the Vertlet style, the integrator class performs the
following operations: (i) receives input concerning the physical state from LAMMPS;
(ii) integrates the initial half-time-step for the stochastic dynamics of the microstruc-
ture and hydrodynamic fields; (iii) computes the microstructure-fluid hydrodynamic
interactions using the specified fluid-structure coupling operators; (iv) computes any
custom interaction forces acting on the microstructures or hydrodynamic fields; (v)
returns output data and control to LAMMPS to complete the initial half-time-step;
(vi) receives final half-time-step input from LAMMPS; (vii) integrates the final half-
time-step for the stochastic dynamics of the microstructure and hydrodynamic fields
similar to steps (iii) and (iv); and (viii) returns output data and control to LAMMPS
to repeat the above steps. An important task handled by LAMMPS is to efficiently
compute the bonded and nonbonded interactions for different types of potentials and
boundary conditions using specialized data structures and sorting methods [35]. In
summary, the modular design of the package facilitates future extensions and devel-
opment of the SELM fluctuating hydrodynamics methods.

4. Model specification. Models can be set up using the SELM software pack-
age in the following ways: (i) custom commands in the LAMMPS script, (ii) Python
codes to generate input data and control SELM-LAMMPS, or (iii) the Java-based
MANGO GUI.

4.1. LAMMPS scripts. For simple models, the LAMMPS script can be mod-
ified easily so that the integrator is used from the SELM package. This can done by
use of a command of the form

fix 1 all SELM FENE_Dimer.SELM_params

This gives the name of a master XML file that specifies the model. The master XML
file specifies the Eulerian mechanics for the hydrodynamics, fluid-structure coupling,
and other aspects of the SELM model and parametrization. An example demonstrat-
ing this approach can be found in the folder /USER-SELM/examples/FENE Dimer/.
This provides a particularly simple way to convert an existing model already set up
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in LAMMPS.

4.2. Python interface to LAMMPS-SELM. Another approach to setting
up models is to use a Python interface to LAMMPS and the SELM package. This
allows for models to be specified programmatically. LAMMPS provides an interface
allowing for any script command to be called interactively from Python. In the current
release, Python interacts with SELM through the standard LAMMPS interface and
through the generation of custom XML data files. In a typical simulation, the model is
specified by developing a custom Python script that generates the needed LAMMPS
data structures and XML files that control the SELM package and performing a
LAMMPS simulation run. This provides a straightforward way to readily adopt
models already set up in LAMMPS using Python.

Fig. 6. Screenshot of the MANGO GUI for setting up models and simulations.

4.3. Graphical modeling software: MANGO. We have developed a Java-
based [24] GUI for setting up SELM-LAMMPS models which is referred to as MANGO
(Modeling and Numerical Graphical Orchestrator). The MANGO software allows for
spreadsheet-like specification of parameters and interactive construction and visual-
ization of models; see Figure 6. MANGO has been implemented in the Java program-
ming language [24] using a modular design, readily allowing for extension mirroring
developments in the SELM codes. In the current release simulations can be set up for
overdamped shear simulations. The interface allows for interactive editing of the ge-
ometry of the Lagrangian microstructures. For instance, the interface allows for new
control nodes in a model to be created or deleted and to be moved interactively. We
also developed in MANGO an interface that allows for Python-style scripting through
a mimetic language called Jython [32]. Many Python scripts can be run directly in
Jython or with minor modifications. For running simulations, the MANGO inter-
face automatically generates both the LAMMPS script driving the simulation and
all needed XML data files for the SELM package. The MANGO graphical interface
provides a particularly easy entry-point for new users to set up SELM models and
perform simulations. An example project and simulation using the MANGO interface
can be found in the folder /USER-SELM/examples/mango-project FENE Dimer/ by
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opening FENE Dimer.SELM Builder Project.

5. Applications. We discuss a few computational simulations performed using
the SELM fluctuating hydrodynamics numerical methods. Many of these simulation
results have been reported in more detail in prior papers [6, 7, 8, 44]. To demonstrate
the core capabilities of the SELM methods, we discuss two particular applications.
The first is a basic model for a polymeric material consisting of short polymer segments
that have bonds that can be irreversibly broken when subjected to shear [8]. We study
how the shear viscosity of the material changes over time as bonds are broken and the
microstructure rearranges. The second is a dynamic extension of the IS-CG model
for lipids developed by Cooke, Kremer, and Deserno [14]. For a self-assembled vesicle,
we show how the SELM fluctuating hydrodynamics captures important collective
dynamics of the lipids that are missing in implicit-solvent simulations using Langevin
dynamics [44].

5.1. Physical benchmarks. We briefly discuss features of how the SELM meth-
ods capture hydrodynamic interactions and thermal fluctuations. We benchmark
SELM against other hydrodynamic models used in the literature and with results
from statistical mechanics.

The effective hydrodynamic interactions in SELM when using IB coupling in (6)
yields interactions similar to the Rotne–Prager–Yamakawa tensor [8, 45]; see Figure 7.

Fig. 7. Hydrodynamic interactions. IB coupling for the parallel and perpendicular components
of the pair-mobility tensor (data points), Rotne–Prager–Yamakawa (RPY) tensor [45], and Oseen
(OS) tensor [1].

The IB coupling used with SELM exhibits in the far-field the same behavior as the
Oseen tensor and in the near-field a regularized interaction similar to Rotne–Prager–
Yamakawa [8, 45].

For a particle tethered by a harmonic spring, we benchmark the results of SELM
to the predictions of equilibrium statistical mechanics [6, 37]; see Figure 8. For SELM
within the inertial regime, we find good agreement with the Gibbs–Boltzmann distri-
bution of statistical mechanics, both for the exhibited distribution of particle positions
and for the distribution of particle velocities. For more details, see [6, 37].

As a further benchmark, we consider the motions of a pair of ellipsoidal particles in
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Fig. 8. Particle subject to harmonic tether. The probability distribution generated by SELM
simulations of a particle subject to a harmonic tether. The particle position is shown on the left,
and the particle velocity is shown on the right. For more details, see [6].

proximity to a wall. We compare the correlations in the passive diffusive motions with
the deterministic motions associated with the hydrodynamic coupling in response to
a force [6]; see Figure 9. The results confirm empirically that the stochastic dynamics
generated by SELM exhibit a Stokes–Einstein relation between the mobility capturing
the hydrodynamic responses and the tensor for the correlated diffusive motions. For
more details, see [6]. In the bulk, we also found in [6] that the SELM hydrodynamic
responses for the ellipsoidal particles are in agreement with prior fluid mechanics
calculations for ellipsoid-shaped particles; see [6, 15, 33].

interactions

mobility

Fig. 9. Diffusivity of ellipsoidal particles near a wall. For two interacting ellipsoidal particles,
the correlated diffusivity tensor components are compared to the hydrodynamic mobility components.
Good agreement is found both for particles near the channel center z = 10nm and for those near the
wall z = 2nm. For more details, see [6].

Overall, these benchmark studies validate that the SELM methods yield rea-
sonable results for the hydrodynamics and fluctuations consistent with prior fluid
mechanics results in the literature and statistical mechanics [6, 8, 15, 33, 37, 45]. The
SELM methods can be used to perform simulations for diverse applications.

5.2. Polymeric material. A basic model has been developed using SELM for a
polymeric material with microstructures comprised of cross-linked polymer chains [8].
The polymeric chains are each comprised of five control points, and each have special-
ized binding sites at the second and fourth control points. The interpolymer bonds
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have a preferred extension and angle of 70o. When an interpolymer bond is strained
beyond 50% of its preferred rest-length, the bond breaks irreversibly; see Figure 10.

This is modeled by the interaction energy

Φ[X] = Φmb + Φma + Φpb + Φpa,(17)

Φmb[X] =
∑

(i,j)∈Q1

φmb(rij),

Φma[X] =
∑

(i,j,k)∈Q2

φma(τ ij , τ jk),

Φpb[X] =
∑

(i,j)∈Q3

φpb(rij),

Φpa[X] =
∑

(i,j,k)∈Q4

φpa(θijk),

where

φmb(r) =
1

2
K1(r − r0,1)2,(18)

φma(τ 1, τ 2) =
1

2
K2 |τ 1 − τ 2|2 ,

φpb(r) = σ2K3 exp

[
− (r − r0,3)2

2σ2

]
,

φpa(θ) = −K4 cos(θ − θ0,4).

The energy terms are Φmb for monomer bonds, Φma for monomer bond angles, Φpb

for interpolymer bonds, and Φpa for interpolymer bond angles. The sets Qk define the
interactions according to the structure of the individual polymer chains and the topol-
ogy of the interpolymer network. r is the separation distance between two monomers,
θ is the bond angle between three monomers, and τ is a tangent vector along the
polymer chain. When bonds are stretched beyond the critical length 3σ, they are
broken irreversibly, which results in the sets Q3 and Q4 being time dependent. For
more details and the specific simulation parameters, see [8]. The model is shown in
Figure 10.

To show how the methods can be used to investigate the relationship between the
polymeric microstructures and contributions to the shear viscosity ηp = σxz/γ̇, we
used the Lees–Edwards formulation of SELM [8] in the quasi-steady regime discussed
in sections 2.4 and 2.2. The shear viscosity is estimated using a variant of the approach
of Irving and Kirkwood [26]; see [8]. As the polymeric network deforms under the
shear, the interpolymer bonds break, and the material transitions from a gel-like
material to a complex fluid. The contributions to the non-Newtonian shear viscosity
ηp during this progression are shown in Figure 11.

The time progression of the viscosity under shear exhibits roughly three stages.
In the first stage, the polymer-network maintains its integrity. Contributions to the
shear viscosity arise from stretching of the interpolymer and intrapolymer bonds. In
the second stage, the interpolymer bonds of the polymer-network begin to break. The
polymers are then free to align with the direction of shear, which results in relaxation
of the intrapolymer bonds to their preferred rest-length. In the third stage, steady-
state is reached with the contributions to the shear viscosity arising from thermal
fluctuations that drive transient misalignments of the polymers with the direction of
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(a) (b) (c)

Fig. 10. Polymeric material model. (a) Five-bead polymer chain with binding sites; (b) bonds
can be irreversibly broken; (c) initial polymeric network.

shear. For a more detailed discussion and specific parameters used in the simulations,
see [8]. These results demonstrate how the SELM fluctuating hydrodynamics shear
methods can be used to study the relationship between material microstructure and
rheological properties.

Fig. 11. Polymer contributions to the shear viscosity.

5.3. Lipid bilayer membrane. We use SELM to perform dynamic simulations
of lipid bilayer membranes based on the implicit-solvent coarse-grained (IS-CG) model
introduced for lipids by Cooke, Kremer, and Deserno [14, 44]. We consider self-
assembled vesicles where the lipids are modeled by the free energy of interactions [14]

Φ[X] = Φrep + Φbond + Φbend + Φattr,(19)

φrep(r; b) =

{
4ε
[
(b/r)

12 − (b/r)
6

+ 1
4

]
, r ≤ rc,

0, r > rc,

φbond(r) = −1

2
kbondr

2
∞ log

[
1− (r/r∞)2

]
,

φbend(r) =
1

2
kbend (r − 4σ)

2
,

φattr(r) =

 −ε, r < rc,
−ε cos2(π(r − rc)/2wc), rc ≤ r ≤ rc + wc,
0, r > rc + wc.

Each of the lipids consists of three beads that interact through the steric Weeks–
Chandler–Andersen repulsion φrep, finitely extensible nonlinear elastic (FENE) bonds
φbond, and bending energy φbend. The second and third lipids interact with other lipids
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through a long-range attractive potential with a wide energy well near the minimum
φattr that models the hydrophobic-hydrophilic effect [14]. The parameter b controls
the steric lipid size, ε the energy scale of interaction, and wc the width of the energy
well of the attractive energy [14]. The IS-CG model can be used to self-assemble
bilayer sheets and vesicles; see Figure 12. For more details, see [14, 44].

We perform simulations in the inertial regime using the SELM fluctuating hydro-
dynamics discussed in section 2.1. We make comparisons with Langevin dynamics
with Stokes drag parametrized to model the same physical regime as SELM [44].
To investigate the lateral correlations within the bilayer and make comparisons, we
consider

cM = 〈∆0X∆MX〉 /
〈
∆0X

2
〉
.(20)

This measures the correlations in the displacement of a reference lipid ∆0X over time
δt with the displacement ∆MX of the center-of-mass of a patch consisting of the M
nearest neighbors, where ∆MX = 1

M

∑M
j=1 ∆XIj . Since the reference lipid is part of

the patch, no significant correlations correspond to a decay cM ∼ 1/M as M is made
larger. The results of this correlation analysis is shown in Figure 13.

SELM

Langevin

(a) (b)  (c)

Fig. 12. Vesicle lipid bilayer membrane model. (a) Self-assembled vesicle and three bead lipid
model; (b) mesh of the SELM fluctuating hydrodynamics coupling the vesicle lipids; (c) lipid pair
correlations.

We can also consider the lipid pair correlations given by Ψ(r) =
〈
∆rX∆0X

T
〉
.

The subscript r specifies the displacement vector from the center-of-mass of a reference
lipid to the center-of-mass of a second lipid within the bilayer. By linear response
theory, the vector field w = Ψe1 can be related to the flow of lipids within the bilayer
that would occur in response to the force e1 = (1, 0, 0). This is shown in Figure 12.

Fig. 13. Correlations between a lipid’s displacement and a cluster of nearest neighbors.

We find that simulations with Langevin dynamics modeling the same physical
regime as SELM are missing significant lateral correlations between the lipids. The
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local non-momentum-conserving drag of Langevin greatly suppresses the collective
motions of the lipids. In contrast, the SELM fluctuating hydrodynamics uses the
same Stokes drag coefficient, but the momentum is conserved and instead transferred
between the lipid degrees of freedom and the hydrodynamic fields modeling the sol-
vent. This better preserves the collective dynamics and long-range spatial correlations
mediated by the solvent, as seen in explicit solvent simulations [3]. For a more de-
tailed discussion and further analysis, see [44]. These simulations demonstrate how
the SELM fluctuating hydrodynamics methods can be used to extend IS-CG models to
include important kinetic effects, facilitating their use in a wider range of applications.

6. Conclusions. We have developed a software package to facilitate the use of
SELM fluctuating hydrodynamics methods. The package is interoperable with the
widely used molecular dynamics package LAMMPS. This facilitates using SELM on
existing models already set up in LAMMPS. The SELM fluctuating hydrodynamics
methods provide ways to extend implicit-solvent coarse-grained (IS-CG) models to
incorporate important kinetic effects, facilitating their use in a wider range of appli-
cations.

The SELM software can be downloaded from http://mango-selm.org.
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fluorescences. Translation et diffusion de molécules ellipsoidales, J. Phys. Rad., 7 (1936),
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