(1) (a) (5 Points) Give an example of a surface S, oriented appropriately to use Stoke's Theorem, which has as its boundary the circle C of radius 1 centered at the origin, lying in the $x y$-plane, and oriented counterclockwise, when viewed from above.
(b) (5 Points) Is the following statement true or false? There exists a scalar function f and a vector field \vec{F} satisfying $\operatorname{div}(\operatorname{grad}(f))=\operatorname{grad}(\operatorname{div}(\vec{F}))$. Explain your reasoning.
(c) (5 Points) Give an example of a nonconstant vector field \vec{F} and an oriented surface S such that $\int_{S} \vec{F} \cdot d \vec{A}=1$.
(d) (5 Points) If possible, give an example of a vector field $\vec{H}(x, y, z)$ such that the curl $\vec{H}=$ \vec{k}. If not possible, explain why.
(2) (a) (10 Points) If $\vec{F}(x, y, z)=\sin (y+z) \vec{i}+x \cos (y+z) \vec{j}+x \cos (y+z) \vec{k}$ and C is the upper half-circle in the $x y$-plane, of radius 3 , and centered ($2,1,0$), traversed counterclockwise when viewed from above, then

$$
\int_{C} \vec{F} \cdot d \vec{r}=
$$

(b) (10 Points) A smooth vector field G has $\operatorname{curl} \vec{G}(x, y, z)=-3 \vec{i}-2 \vec{j}+7 \vec{k}$. The circulation of \vec{G} around a square of side $\sqrt{17}$ in the plane $x-y-z=0$, oriented clockwise when viewed from the positive z-axis, is equal to \qquad
(3) (a) (10 Points) A smooth vector field \vec{F} has div $\vec{F}(-1,0,-2)=13$. Estimate the flux of \vec{F} out of a small sphere of radius 0.03 centered at the point $(-1,0,-2)$.
(b) (10 Points) A smooth vector field \vec{G} has curl $\vec{G}(0,0,0)=11 \vec{i}-13 \vec{j}+7 \vec{k}$. Estimate the circulation around a circle of radius 0.03 centered at the origin in the $y z$-plane and oriented counterclockwise when viewed from the positive x-axis.
(4) (a) (10 Points) Suppose \vec{G} is a smooth vector field with div $\vec{G}=\|\vec{r}\|$. Find the flux of \vec{G} through the sphere of radius 3 centered at the origin and oriented outward.
(b) (10 Points) Let \vec{F} be a smooth vector field, everywhere except at the origin, with $\operatorname{div} \vec{F}=0$ and flux 4π through any sphere oriented outward. Find the flux of \vec{F} through the ellipsoid $2 x^{2}+y^{2}+3 y^{2}=25$ oriented inward. Show your reasoning.
(5) (a) (10 Points) Find a vector potential for the vector field $\vec{F}=6 x \vec{i}+\left(7 y-z^{2}\right) \vec{j}+(x-13 z) \vec{k}$.
(b) (10 Points) Use Stoke's theorem to compute the flux of \vec{F} through the hemisphere $z=\sqrt{1-x^{2}-y^{2}}$ oriented outward.

Useful formulas

- The volume and surface area of sphere of radius R are $\frac{4}{3} \pi R^{3}$ and $4 \pi R$, respectively.
- $\operatorname{div} \vec{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}$
- The divergence, or flux density, or a smooth vector field \vec{F} is

$$
\operatorname{div} \vec{F}(x, y, z)=\lim _{\text {Volume } \rightarrow 0} \frac{\int_{S} \vec{F} \cdot d \vec{A}}{\text { Volume of } S}
$$

where S is a sphere centered at (x, y, z), oriented outward, that contracts down to (x, y, z) in the limit.

- curl $\vec{F}=\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \vec{i}-\left(\frac{\partial F_{3}}{\partial x}-\frac{\partial F_{1}}{\partial z}\right) \vec{j}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \vec{k}$
- The circulation density of a smooth vector field \vec{F} at (x, y, z) around the direction of the unit vector \vec{n} is defined, provided the limit exists, to be

$$
\operatorname{circ}_{\vec{n}} \vec{F}(x, y, z)=\operatorname{curl} \vec{F} \cdot \vec{n}=\lim _{\text {Area } \rightarrow 0} \frac{\text { Circulation around } C}{\text { Area inside } C}=\lim _{\text {Area } \rightarrow 0} \frac{\int_{C} \vec{F} \cdot d \vec{r}}{\text { Area inside } C}
$$

The circle C is in the plane perpendicular to \vec{n} and oriented by the right-hand rule.

- The flux of a smooth vector field \vec{F} through a smooth oriented surface S parameterized by $\vec{r}=\vec{r}(s, t)$, where ($s, t)$ varies in a parameter region R, is given by

$$
\int_{S} \vec{F} \cdot d \vec{A}=\int_{R} \vec{F}(\vec{r}(s, t)) \cdot\left(\frac{\partial \vec{r}}{\partial s} \times \frac{\partial \vec{r}}{\partial t}\right) d s d t
$$

- The area of a surface S parameterized by $\vec{r}=\vec{r}(s, t)$, where (s, t) varies in a parameter region R, is given by

$$
\int_{S} d A=\int_{R}\left\|\frac{\partial \vec{r}}{\partial s} \times \frac{\partial \vec{r}}{\partial t}\right\| d s d t
$$

- The Divergence Theorem (when applicable):

$$
\int_{S} \vec{F} \cdot d \vec{A}=\int_{W} \operatorname{div} \vec{F} d V
$$

- Stokes' Theorem (when applicable):

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{S} \operatorname{curl} \vec{F} \cdot d \vec{A}
$$

